导航:首页 > 电商促销 > 电子商务中协同过滤推荐技术研究

电子商务中协同过滤推荐技术研究

发布时间:2025-05-21 20:09:28

❶ 个性化推荐算法——协同过滤

电子商务推荐系统的一种主要算法。
协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。
与传统文本过滤相比,协同过滤有下列优点:
(1)能够过滤难以进行机器自动基于内容分析的信息。如艺术品、音乐;
(2)能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤;
(3)推荐的新颖性。
正因为如此,协同过滤在商业应用上也取得了不错的成绩。Amazon,CDNow,MovieFinder,都采用了协同过滤的技术来提高服务质量。
缺点是:
(1)用户对商品的评价非常稀疏,这样基于用户的评价所得到的用户间的相似性可能不准确(即稀疏性问题);
(2)随着用户和商品的增多,系统的性能会越来越低;
(3)如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐(即最初评价问题)。
因此,现在的电子商务推荐系统都采用了几种技术相结合的推荐技术。
案例: AMAZON 个性化推荐系统先驱 (基于协同过滤)
AMAZON是一个虚拟的网上书店,它没有自己的店面,而是在网上进行在线销售. 它提供了高质量的综合节目数据库和检索系统,用户可以在网上查询有关图书的信息.如果用户需要购买的化,可以把选择的书放在虚拟购书篮中,最后查看购书篮中的商品,选择合适的服务方式并且提交订单,这样读者所选购的书在几天后就可以送到家.
AMAZON书店还提供先进的个性化推荐功能,能为不同兴趣偏好的用户自动推荐符合其兴趣需要的书籍. AMAZON使用推荐软件对读者曾经购买过的书以及该读者对其他书的评价进行分析后,将向读者推荐他可能喜欢的新书,只要鼠标点一下,就可以买到该书了;AMAZON能对顾客购买过的东西进行自动分析,然后因人而异的提出合适的建议. 读者的信息将被再次保存.这样顾客下次来时就能更容易的买到想要的书. 此外,完善的售后服务也是AMAZON的优势,读者可以在拿到书籍的30天内,将完好无损的书和音乐光盘退回AMAZON, AMAZON将原价退款. 当然AMAZON的成功还不止于此, 如果一位顾客在AMAZON购买一本书,下次他再次访问时,映入眼帘的首先是这位顾客的名字和欢迎的字样.

❷ 电子商务推荐系统现在有什么问题

电子商务推荐系统定义为:利用电子商务网站向用户提供商品信息和建议,帮助客户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。它是一个基于客户网上购物的以商品为推荐对象的个性化推荐系统,为客户推荐符合其兴趣爱好的商品。分析客户的消费偏向,向每个客户具有针对性地推荐的产品,帮助客户从庞大的商品目录中挑选真正适合自己需要的商品。电子商务推荐系统在帮助了客户的同时也提高了客户对商务活动的满意度,从而换来对电子商务站点的进一步支持。
电子商务推荐系统主要起到了三个方面的作用:首先,极大地增加了客户,可以把网站的浏览者转变为购买者,提高主动性;其次,可以提高网站相关系列产品的连带销售能力;最后,可以提高、维持客户对网站的满意度和信任度。
电子商务推荐系统具有良好的发展和应用前景。在日趋激烈的竞争环境下,电子商务推荐系统能有效保留客户,提高电子商务网站系统能大大提高企业的销售额。成功的电子商务推荐系统将会产生巨大的经济效益和社会效应。
电子商务推荐技术
目前,电子商务推荐系统中使用的主要推荐技术有基于内容推荐,协同过滤推荐,基于知识推荐,基于效用推荐,基于关联规则推荐,混合推荐等等。
1.基于内容的推荐。它是信息过滤技术的延续与发展,项目或对象通过相关特征的属性来定义,系统基于商品信息, 包括商品的属性及商品之间的相关性和客户的喜好来向其推荐。基于商品属性主要是基于产品的属性特征模型推荐。
内容推荐技术分析商品的属性及其相关性可以脱机进行,因而推荐响应时间快。缺点是难以区分商品信息的品质和风格,而且不能为用户发现新的感兴趣的商品,只能发现和用户已有兴趣相似的商品。
2.协同过滤推荐。协同过滤推荐是目前研究最多、应用最广的电子商务推荐技术。它基于邻居客户的资料得到目标客户的推荐,推荐的个性化程度高。利用客户的访问信息,通过客户群的相似性进行内容推荐,不依赖于内容仅依赖于用户之间的相互推荐,避免了内容过滤的不足,保证信息推荐的质量。协同过滤推荐优点有:能为用户发现新的感兴趣的商品;不需要考虑商品的特征,任何形式的商品都可以推荐。缺点是:稀疏性问题,用户对商品的评价矩阵非常稀疏;可扩展性问题,随着系统用户和商品的增多,系统的性能会越来越低;冷启动问题,如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐。
3.基于知识的推荐。在某种程度上可以看成是一种推理技术,各个方法因所用的知识不同而有明显区别。基于知识的推荐提出了功能知识的概念。简单的说,功能知识是关于某个项目如何满足某个特定客户的知识,它能解释需要和推荐之间的关系。在基于知识的推荐看来,客户资料可以是任何能支持推理的知识结构,并非一定是用户的需要和偏好。
4.基于效用的推荐。它是根据对客户使用项目的效用进行计算的,核心问题是如何为每个客户创建效用函数,并考虑非产品属性,如提供商的可靠性和产品的可用性等。它的优点是能在效用函数中考虑非产品因素。效用函数通过交互让用户指定影响因素及其权重对于大多数用户而言是极其繁琐的事情,因而限制了该技术的应用。
5.基于关联规则的推荐系统往往利用实际交易数据作为数据源,它符合数据源的通用性要求。以关联规则为基础,把已购商品作为规则头,推荐对象作为规则体,其中关联规则的发现最关键且最耗时,但可以离线进行。其特点是实现起来比较简洁,推荐效果良好,并能动态地把客户兴趣变化反映到推荐结果中。
6.混合推荐技术。混合推荐系统整合两种或更多推荐技术以取得更好的实际效果。最常见的做法是将协同过滤推荐技术与其它某一种推荐技术相结合。例如,结合基于协同过滤和基于内容推荐这两种推荐技术,尽量利用它们的优点而避免其缺点,提高推荐系统的性能和推荐质量。比如,为了克服协同过滤的稀疏性问题,可以利用用户浏览过的商品预期用户对其他商品的评价,这样可以增加商品评价的密度,利用这些评价再进行协同过滤,从而提高协同过滤的性能。
电子商务推荐系统,一方面有助于电子商务网站内容和结构自适应性的实现,另一方面在帮助客户快速定位感兴趣的商品的同时也为企业实现了增值。电子商务推荐系统作为有利的分析工具和促销手段,已成为电子商务网站的竞争工具,必将获得广泛的应用和发展。本文对电子商务推荐系统进行了介绍,并对推荐技术进行了概述。目前国内的电子商务网站在这方面的实践处在快速发展的阶段,因此还需要继续研究出更智能、更优化的电子商务推荐技术。

❸ 三种常用的电子商务推荐算法

三种常用的电子商务推荐算法是:基于内容的推荐(Content-Based Recommendation)、协同过滤推荐(Collaborative Filtering Recommendation)以及混合推荐(Hybrid Recommendation)。

基于内容的推荐:

这种推荐方法主要是通过分析用户以前的行为和兴趣,推荐与其兴趣相似的产品或服务。例如,如果一个用户在过去的行为中显示出对科幻电影的兴趣,那么基于内容的推荐系统就会推荐更多的科幻电影。这种推荐方法的优点是可以为用户提供与其兴趣高度匹配的产品,缺点是它无法发现用户的新兴趣,因为它只推荐与用户过去行为相似的产品。

协同过滤推荐:

协同过滤推荐是另一种常见的电子商务推荐算法,它通过寻找具有相似兴趣的用户群体,然后将这些用户群体喜欢的产品推荐给新用户。例如,如果一个用户喜欢看《流浪地球》,那么协同过滤可能会推荐其他喜欢《流浪地球》的用户喜欢的其他电影。这种方法的优点是可以帮助用户发现新的兴趣点,缺点是可能会出现冷启动问题,即对于没有任何行为的新用户或新产品,系统无法进行有效的推荐。

混合推荐:

混合推荐算法是结合基于内容的推荐和协同过滤推荐的一种方法。它同时考虑了用户的历史行为和兴趣,以及相似用户的行为和兴趣,以生成更全面、更准确的推荐。例如,一个混合推荐系统可能会首先使用基于内容的推荐来确定用户对科幻电影的兴趣,然后使用协同过滤来推荐其他喜欢科幻电影的用户喜欢的其他类型的电影。这种方法的优点是可以克服基于内容的推荐和协同过滤推荐的局限性,提供更准确、更个性化的推荐,缺点是可能需要更复杂的算法和更多的计算资源。

阅读全文

与电子商务中协同过滤推荐技术研究相关的资料

热点内容
千船上海电子商务有限公司 浏览:914
活动促销方案提纲 浏览:384
徐州电子商务有限公司怎么样 浏览:565
医院设计前期与策划方案 浏览:430
两委主干培训方案 浏览:517
旅游电子商务产品策划方案 浏览:241
培训方案模板下载 浏览:289
大家为什么都不愿意做市场营销 浏览:714
2017全年活动策划方案 浏览:974
广东电子商务企业名单 浏览:286
年会策划书方案 浏览:518
杭州雅淘电子商务有限公司 浏览:736
电子商务中协同过滤推荐技术研究 浏览:620
全员培训方案市委办 浏览:319
学校募捐活动策划方案 浏览:150
信用社全年营销方案 浏览:428
租房app推广活动方案 浏览:741
香港中文大学市场营销offer 浏览:226
市场营销策划费用合同 浏览:757
手工编织大赛策划方案 浏览:251