❶ 數據挖掘技術主要包括哪些
數據挖掘又譯為資料探勘、數據采礦。是一種透過數理模式來分析企業內儲存的大量資料,以找出不同的客戶或市場劃分,分析出消費者喜好和行為的方法。它是資料庫知識發現中的一個步驟。數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。主要有數據准備、規律尋找和規律表示3個步驟。數據挖掘的任務有關聯分析、聚類分析、分類分析、異常分析、特異群組分析和演變分析等。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。
是一個用數據發現問題、解決問題的學科。
通常通過對數據的探索、處理、分析或建模實現。
我們可以看到數據挖掘具有以下幾個特點:
基於大量數據:並非說小數據量上就不可以進行挖掘,實際上大多數數據挖掘的演算法都可以在小數據量上運行並得到結果。但是,一方面過小的數據量完全可以通過人工分析來總結規律,另一方面來說,小數據量常常無法反映出真實世界中的普遍特性。
非平凡性:所謂非平凡,指的是挖掘出來的知識應該是不簡單的,絕不能是類似某著名體育評論員所說的「經過我的計算,我發現了一個有趣的現象,到本場比賽結束 為止,這屆世界盃的進球數和失球數是一樣的。非常的巧合!」那種知識。這點看起來勿庸贅言,但是很多不懂業務知識的數據挖掘新手卻常常犯這種錯誤。
隱含性:數據挖掘是要發現深藏在數據內部的知識,而不是那些直接浮現在數據表面的信息。常用的BI工具,例如報表和OLAP,完全可以讓用戶找出這些信息。
新奇性:挖掘出來的知識應該是以前未知的,否則只不過是驗證了業務專家的經驗而已。只有全新的知識,才可以幫助企業獲得進一步的洞察力。
價值性:挖掘的結果必須能給企業帶來直接的或間接的效益。有人說數據挖掘只是「屠龍之技」,看起來神乎其神,卻什麼用處也沒有。這只是一種誤解,不可否認的 是在一些數據挖掘項目中,或者因為缺乏明確的業務目標,或者因為數據質量的不足,或者因為人們對改變業務流程的抵制,或者因為挖掘人員的經驗不足,都會導 致效果不佳甚至完全沒有效果。但大量的成功案例也在證明,數據挖掘的確可以變成提升效益的利器
❷ 數據挖掘:概念與技術(原書第3版)
書不錯,買得值!從小我就喜歡讀書,喜歡看數據方面的書。《》完整全面地講述數據挖掘的概念、方法、技術和最新研究進展。本書對前兩版做了全面修訂,加強和重新組織了全書的技 術內容,重點論述了數據預處理、頻繁模式挖掘、分類和聚類等的內容,還全面講述了OLAP和離群點檢測,並研討了挖掘網路、復雜數據類型以及重要應用領 域。《》是數據挖掘和知識發現領域內的所有教師、研究人員、開發人員和用戶都必讀的參考書,是一本適用於數據分析、數據挖掘和知識發現課程的優秀教材,可以用做高年級本科生或者一年級研究生的數據挖掘導論教材。《》完整全面地講述數據挖掘的概念、方法、技術和最新研究進展。本書對前兩版做了全面修訂,加強和重新組織了全書的技 術內容,重點論述了數據預處理、頻繁模式挖掘、分類和聚類等的內容,還全面講述了OLAP和離群點檢測,並研討了挖掘網路、復雜數據類型以及重要應用領 域。《》是數據挖掘和知識發現領域內的所有教師、研究人員、開發人員和用戶都必讀的參考書,是一本適用於數據分析、數據挖掘和知識發現課程的優秀教材,可以用做高年級本科生或者一年級研究生的數據挖掘導論教材。
❸ 舉例說明數據挖掘技術可以應用於市場營銷做什麼
1.
識別客戶,讓你知道哪些是你的潛在客戶,哪些客戶的忠誠度比較高,根據這些內數據得到你的客戶容分類;
2.
對不同類型的客戶實施精細化分級管理,滿足客戶需求,同時能夠節省成本、增加效率,最終保有和提升客戶的忠誠度;
3.
准確定位客戶的購買行為,通過需求分析、購買力分析、滿意度分析等數據分析挖掘,不斷改進貨品和服務,能夠更好的滿足客戶需求,增加銷量、節約成本,以達到營銷的目的。
❹ 數據挖掘怎麼最快入門書籍或培訓都可以。
你可以找一本書,對數據挖掘背景和應用介紹比較細,具體方法使用和實例分析。
1、數據挖掘原理 漢德(David Hand), 曼尼拉(Heikki Mannila), 史密斯(Padhraic Smyth)著
2、數據挖掘技術:市場營銷、銷售與客戶關系管理領域應用:for marketing, sales, and customer relationship ma (美) Michael J. A. Berry, Gordon S. Linoff著
我喜歡讀外國寫的書,這是我剛借的書,我認為很好。你可以做個參考。還有可以看看數據挖掘論文,網上有很多。
❺ 數據挖掘的應用領域有哪些
數據挖掘的應用非常廣泛,只要該產業有分析價值與需求的資料庫,皆可利用數據挖掘工具進行有目的的發掘分析。常見的應用案例多發生在零售業、製造業、財務金融保險、通訊及醫療服務:
(1)商場從顧客購買商品中發現一定的關聯規則,提供打折、購物券等促銷手段,提高銷售額;
(2)保險公司通過數據挖掘建立預測模型,辨別出可能的欺詐行為,避免道德風險,減少成本,提高利潤;
(3)在製造業中,半導體的生產和測試中都產生大量的數據,就必須對這些數據進行分析,找出存在的問題,提高質量;
(4)電子商務的作用越來越大,可以用數據挖掘對網站進行分析,識別用戶的行為模式,保留客戶,提供個性化服務,優化網站設計;
一些公司運用數據挖掘的成功案例,顯示了數據挖掘的強大生命力:
美國AutoTrader是世界上最大的汽車銷售站點,每天都會有大量的用戶對網站上的信息點擊,尋求信息,其運用了SAS軟體進行數據挖掘,每天對數據進行分析,找出用戶的訪問模式,對產品的喜歡程度進行判斷,並設特定服務,取得了成功。
Reuteres是世界著名的金融信息服務公司,其利用的數據大都是外部的數據,這樣數據的質量就是公司生存的關鍵所在,必須從數據中檢測出錯誤的成分。Reuteres用SPSS的數據挖掘工具SPSS/Clementine,建立數據挖掘模型,極大地提高了錯誤的檢測,保證了信息的正確和權威性。
Bass Export是世界最大的啤酒進出口商之一,在海外80多個市場從事交易,每個星期傳送23000份定單,這就需要了解每個客戶的習慣,如品牌的喜好等,Bass Export用IBM的Intelligent Miner很好的解決了上述問題。
❻ 舉例說明數據挖掘技術可以應用於市場營銷做什麼
識別客戶,讓你知道哪些是你的潛在客戶,哪些客戶的忠誠度比較高,根據這些數據得到你的客戶分類;
對不同類型的客戶實施精細化分級管理,滿足客戶需求,同時能夠節省成本、增加效率,最終保有和提升客戶的忠誠度;
准確定位客戶的購買行為,通過需求分析、購買力分析、滿意度分析等數據分析挖掘,不斷改進貨品和服務,能夠更好的滿足客戶需求,增加銷量、節約成本,以達到營銷的目的。