Ⅰ 如何利用大數據進行市場營銷
主要是對大數據進行詳細的分析,整理,分類,找出自己的精準用戶
Ⅱ 大數據對營銷有什麼價值和意義
1.對用戶個體特徵與行為的分析
只有積累足夠的用戶數據,才能分析出用戶的喜好與購買習慣等,甚至做到「比用戶更了解用戶自己」。這是大數據營銷的前提與出發點,也是最核心的價值。無論如何,那些過去將「一切以客戶為中心」作為口號的企業可以想想,過去你們真的能及時全面地了解客戶的需求與所想嗎?或許只有大數據時代這個問題的答案才會更明確。如果能在產品生產之前了解潛在用戶的主要特徵,以及他們對產品的期待,那麼你的產品一定投其所好。
2.數據分析是保證廣告與營銷信息的精準推送
過去多年精準廣告與營銷總在被許多公司提及,但是真正做到的少之又少,反而是垃圾信息泛濫。究其原因主要就是過去名義上的精準廣告與營銷並不怎麼精準,因為其缺少用戶特徵數據以及詳細准確的分析。而現在的RTB廣告等應用則向我們展示了比以前更好的精準性,而其背後靠的是大數據支撐。
3.數據分析才能實現對競爭對手的有效監測
競爭對手在干什麼是許多企業想了解的,即使對方不會告訴你,但你卻可以通過大數據監測分析得知。通過大數據分析找准方向,例如,可以進行傳播趨勢分析、內容特徵分析、互動用戶分析、正負情緒分類、口碑品類分析、產品屬性分布等,也可以通過監測掌握競爭對手傳播態勢。
4.數據分析可以監測品牌危機以及提供化解危機的支持
新媒體時代,品牌危機使許多企業談虎色變,然而大數據可以讓企業提前有所洞悉。在危機爆發過程中,最需要的是跟蹤危機傳播趨勢,識別重要參與人員,方便快速應對。通過大數據可以採集負面信息內容以便及時啟動危機跟蹤和報警,按照社群的社會屬性分析,聚類事件過程中的觀點,識別關鍵人物及傳播路徑,進而可以保護企業、產品的聲譽,即抓住源頭和關鍵節點,快速有效地處理品牌危機。
5.大數據分析可以有效地改善商品用戶體驗
改善商品用戶體驗,關鍵在於要真正了解用戶及他們所使用的你的產品的狀況與感受。例如,在大數據時代或許你正駕駛的汽車可提前救你一命,因為只要通過遍布全車的感測器收集車輛運行信息,就在你的汽車關鍵部件發生問題之前,會提前向你或4S店預警,這決不僅僅是節省幾個金錢,而且對保護生命大有裨益。
Ⅲ 企業如何利用大數據分析法做好品牌營銷
網路信息的分析以數據技術為基礎,在人類學習生活各個方面都起到不可或缺的作用,它促進了社會的轉型和媒介的發展。在企業品牌傳播方面,以大量的數據為基礎並且進行深度挖掘,來獲得消費者狀態、品牌傳播的有效方法和傳播效果。一般的數據分析方法已經落伍,滿足不了企業品牌傳播的更高要求。
企業要學會利用大數據建立品牌意識,對品牌的名稱、定位、形象等等一系列精準,讓客戶對你留有更深刻的印象,藉助信息傳播的便利性,將品牌概念傳輸給消費方。其次,要利用大數據抓取產品差異。開放的市場大環境下,產品的共性特別的多。但企業缺失的往往是抓取產品差異,找出產品的閃光點。同時也要了解客戶及其需求點。企業要用大數據的分析,優化推廣渠道,這樣才能更好的在客戶心中留下印象,不難發現,現在很多的行業區域性特別強,如果一個品牌在地域上越做越大,慢慢延伸,會得到很廣泛及牢固的效果。
Ⅳ 大數據在電商行業的應用是怎樣的如何利用大數據做競品分析
如圖說抄明大數據在電商的應用已經很全面了,現在隨著市場流量成本變高,流量獲取困難,很多品牌方已經認識到利用數據指導業務,管理業務的重要性。
而利用大數據做競品調研主要市場銷量銷額的份額、熱銷SKU、品牌方的定價、促銷政策、投放渠道等幾個維度,可以了解用戶的需求發現市場潛在機會,對比品牌間在市場的競爭力,跟自己的業務情況結合分析做出營銷策略。
大數據分析關鍵點是對海量數據的挖掘,清理、處理,要麼自己組建數據分析團隊,需要一個全面的技術過硬的團隊搭建還是不容易的,要麼是第三方合作,購買數據報告,市場數據分析全面但是成本太高了,或者用第三方數據分析Saas軟體。提供數據源可視化的觀測分析、像是慢慢買、奧維雲網、魔鏡都是做大數據分析系統的,只是每個深耕不同行業、數據源獲取的方式不一樣。
Ⅳ 如何通過大數據分析做市場調研
大數據時代新的市場研究方法使「無干擾」真實還原消費過程成為可能,智能化的信息處理技術使低成本、大樣本的定量調研成為現實,這將推動消費行為及消費心理研究達到一個新的高度,幫助快速消費品企業更為精準地捕捉商機。大數據時代的市場研究方法主要體現在以下四個方面。
1.基於互聯網進行市場調研提高了效率,降低了成本
網路調研具有傳統調研方法無可比擬的便捷性和經濟性。快速消費品企業在其門戶網站建立市場調研板塊,再將新產品郵寄給消費者,消費者試用後只要在網站上點擊即可輕松完成問卷填寫,其便利性大大降低了市場調研的人力和物力投入,也使得消費者更樂於參與市場調研。同時,網路調研的互動性使得企業在新產品尚處於概念階段即可利用3D擬真技術進行產品測試,通過與消費者互動,讓消費者直接參與產品研發,從而更好地滿足市場需求。
2. 挖掘網路社交平台信息成為研究消費態度及心理的新手段
QQ、微博、微信等社交平台已日漸成為新生代消費群體不可或缺的社交工具,快速消費品的消費者往往有著極高的從眾性,因此針對社交平台的信息挖掘成為研究消費潮流趨勢的新手段。例如,通過微博評論可以統計分析消費者對某種功能型產品的興趣及偏好,這對研究消費態度及心理有非常大的幫助。更重要的是,這類信息屬於消費者主動披露,與訪談形式的被動挖掘相比信息的真實性更高。
3. 移動終端提供了實時、動態的消費者信息
隨著3G網路及智能手機普及,市場研究已滲透到移動終端領域。大量的手機APP應用(例如二維碼掃描等)為實時採集消費信息提供了可能性,移動終端的信息分析在購買時點、產品滲透率及回購率、獎勵促銷效果評估等方面將發揮不可估量的作用。
4. 零售終端信息採集系統幫助企業了解市場
目前,PC-POS系統在零售終端得到了廣泛的應用,只要掃描產品條形碼,消費者購買的產品名稱、規格、購進價、零售價、購買地點等信息就可以輕松採集。通過構建完整的零售終端信息採集系統,快速消費品企業可以掌握商業渠道的動態信息,適時調整營銷策略。
環顧四周,在每個行業中,大數據的增長正在改變我們收集、存儲、分析和應用數據的方式。正如很多公司目前正在收集整理的那樣,大家面臨的共同問題是智能化信息採集、儲存及分析。
l 超大容量的數據倉庫。數據倉庫具有容量大、主題明確、高度集成、相對穩定、反映歷史變化等特點,可以有效地支撐快速消費品企業進行大數據分析與應用。數據倉庫可以更有效地挖掘數據資源,並可以按照日、周、月、季、年等周期提供分析報表,有助於營銷人員更有效地制定營銷戰略。
l 專業、高效的搜索引擎。旅遊搜索、博客搜索、購物搜索、在線黃頁搜索等專業搜索引擎已經得到了廣泛應用,快速消費品企業可以根據自己的特點構建專業化的搜索引擎,對相關的企業信息、產品信息、消費者評價信息、商業服務信息等數據進行智能化檢索、分類及搜集,形成高度專業化、綜合性的商業搜索引擎。
l 基於雲計算的數學分析模型。市場研究的關鍵是洞察消費者需求,基於雲計算的數學分析模型可以將碎片化信息還原為完整的消費過程信息鏈條,更好地幫助營銷人員研究消費行為及消費心理。這些碎片化的信息包括消費者在不同時間、不同地點、不同網路應用上發布的消費價值觀信息、購買信息、產品評論信息等。基於雲計算的智能化分析,一方面可以幫助市場研究人員對消費行為及消費心理進行綜合分析,另一方雲計算成本低、效率高的特點非常適合快速消費品企業數據量龐大的特性。
傳統的市場研究包括定性研究及定量研究,以座談會為主的定性研究受制於主持人的訪談技巧,以街頭攔截訪問為主的定量研究雖然以嚴謹的抽樣理論為基礎,但同樣不能完全代表總體的客觀情況。而大數據時代革命性的調研方法為市場研究人員提供了以「隱形人」身份觀察消費者的可能性,超大樣本量的統計分析使得研究成果更接近市場的真實狀態。
與此同時,大數據時代的新方法、新手段也帶來新的問題,一是如何智能化檢索及分析文本、圖形、視頻等非量化數據,二是如何防止過度採集信息,充分保護消費者隱私。雖然目前仍然有一定的技術障礙,但不可否認的是大數據市場研究有著無限廣闊的應用前景。