⑴ 淺談電子商務的數據分析
淺談電子商務的數據分析
隨著科學技術的發展,電子商務技術也在逐步的提升,人們在工作中需要的數據處理也越來越多。下面我們就以電子商務為例,為大家簡單的介紹一下進行數據分析的目的與流程。
一、進行數據分析的目的
人們在工作和生活中需要對數據進行分析,主要有兩個方面:
1、為了更好的發現問題,並且在發現問題的過程中,找到問題的根源,通過採用具體可行有效的辦法,對存在的問題進行解決。
2、為了總結發展趨勢。這里的數據分析就是在以往的數據基礎上,實現對總體數據的分析與總結,主要表現在為網路營銷提供解決支持的辦法。
數據分析在電子商務裡面運用的十分廣泛,可以依據相關的規定,對這些數據進行相關的分類,在依據實際的運營情況下,保證網站的可持續發展。下面我們就來具體的分析一下進行數據分析的流程。
二、進行數據分析的流程
在電子商務方面,進行的數據分析可以分為以下幾個方面。
1、對關鍵數據進行分析
由於不同的電子商務,其定位及針對的客戶群體不同,因此其實際的運營效果也不一樣,因此需要對網站內的關鍵數據進行分析,以此來判斷網站是否在正常運行。網站的關鍵數據包含很多方面,具體為:
(1)、要對網站的獨立用戶的訪問量進行總結分析,換句話說就是對電腦進行網站的訪問數量進行統計,需要注意的是電腦訪問數量與IP地址訪問不是同一個概念。
(2)、統計積極訪問者、忠實訪問者的比率及客戶的轉化率。
(3)、對客戶單價、滿意度。回訪率及投資回報率都要進行一定的數據統計,以此來分析整個網站的實際運營狀況。
2、對收集的數據進行分
網站數據的收集,是進行數據分析前的重要一步,因為它直接決定了分析結果的合理性。因此做好完整、合理、真實的數據收集工作是十分必要的。在這個過程中要注意對網站後台數據、搜索引擎數據、統計工具的數據等進行分析,因為這些數據看似雜亂,實際上是反應網站是否正常運行及運轉狀態的重要標志。
綜上所述,在對電子商務進行數據分析的過程中,不僅要注意以上兩點,還要針對這些數據進行量化分析,在完成所有步驟之後再開始制定方案。只有這樣,才能客觀的反應出公司的實際運轉狀態,才能達到預想的目的。
以上是小編為大家分享的關於淺談電子商務的數據分析的相關內容,更多信息可以關注環球青藤分享更多干貨
⑵ 電商運營如何做數據分析
一. 電商數據分來析架構
首先需要承認的源是,數據分析架構模型的前置是需要對業務的日常工作場景及需求有充足的理解,並能提出具有建議的數據分析方法,以釋放業務人員在數據分析環節的時效。
二. 線上店鋪管理分析
對於一家店鋪的用戶而言,一個完整的購買流程:看到廣告-進入店鋪-瀏覽商品-咨詢購買-下單支付。對於店鋪運營人員應該如何對各個環節的用戶進行流量分析和管理呢?針對此,下面將分別從流量分析、銷售分析、商品分析、活動分析四方面進行詳細解析。
三. 線下門店管理分析
對於電商企業而言,過去是以線上店鋪為主,隨著業務的擴張,現在這些企業通過不斷拓展線下門店,彌補線上用戶體驗的缺失,融合線上線下,從而擴大用戶規模。為此,永洪咨詢專家設計出線下門店管理分析體系,通過線下門店拓展分析、店鋪選址分析,幫助電商企業選擇最合適的店鋪以及對店鋪實現高效管理。
⑶ 電商運營如何做數據分析
什麼是數據:所謂數據(data),是描述客觀事物的各種符號,數據包括數字、聲音、顏色、文字、圖像等。
對於電商來說,數據很多時候就是數字,比如:流量、轉化率、訪問深度、寶貝好評數、客服銷售佔比等等。
獲取這些數據也很容易,基本上我用到的軟體也就這幾個:生意參謀、生e經、赤兔。
對電商來說,數據統計包括:月度銷售統計表、客服銷售統計表、單品流量分布表等等。
我們可以根據自身的需要,在後台採集各種數據,做出各種樣式的統計表。對我來說,數據統計,有EXCEL就夠了,電商沒有那麼深奧,EXCEL幾乎能幫我們搞定所有數據統計的工作。
⑷ 電商數據分析應該從哪些方面進行分析
我一直在問答談運營技術。但是我認為,我最強在於數據跟視覺。
我認為,競爭到最後,運營跟運營之間的差距是從數據跟視覺開始區分的。
今天我們恰巧有時間來談談數據。
什麼是數據分析思維?
數據分析思維,我認為是:把行為轉化為數據-通過數據反推行為。
我舉個例子:
你經常來我店鋪購買姨媽巾。
你今天過來買姨媽巾,我就知道你大概一周內要來大姨媽。根據你購買的數量跟規格,我就能推斷你一次大姨媽來多久,量大概多少。拉出來你半年的購買時間,我就可以推斷你多久一次大姨媽是不是穩定。
如果有兩個月沒看到你購買姨媽巾了。。。那肯定是在兩個月前,你男朋友的雨衣破了。
拉出來你男朋友的購買記錄,我就知道,這個店鋪的雨衣可能不合格。
為了驗證他是不是不合格,我們去看看他半年內的復購率是不是遠低於同行。
嗯,就因為你沒有買姨媽巾,我懷疑這個店鋪的雨衣不合格。
這就是數據分析的基本思維。
學會數據分析的基本思維,只能說,你勉強具備數據分析的可能。
那麼做數據分析。需要明白幾個東西。
1、數據樣本:數據樣本如果選擇不合理,那麼結果完全就是錯誤的。譬如我去抓取一個定位40歲大媽的姨媽巾店鋪,要中國女性的姨媽周期,那根本就不科學好嗎。這是青春期跟更年期的差異(此例子說明林慕白同學同樣對婦科知識有所涉獵,歡迎廣大適齡未婚女性知友來信咨詢)。
實戰中經常犯的例子是:平銷轉化率很好的單品,在聚劃算賣不好。平銷轉化率不好的某些單品,聚劃算反而會賣爆?為什麼呢?想想,別問我,自己想。鬧不明白就別嘗試做電商的數據分析了。
2、數據選擇:實際上我們會遇到很多的數據,但是有些數據不一定是我們想要的。就像我們這輩子會遇到很多很好的女生,但是我們很難明白,誰才能更好陪伴我們走完這一生。這個事情無法舉例,我這邊給一份試題:
現在我們店鋪需要做優惠券促銷,目的要提高客單價。
好,你告訴我要做滿100減10元。
嗯,很好,那你現在告訴我,為什麼是滿100而不是滿110,為什麼是減10元而不是減20。拿出來你的數據。
嗯,不要問我怎麼弄。也不要懷疑我是不是真的能分析出來,我真的能。
3、動態變化:我們一般最常用的,就是通過數據之間的變化,來分析可能出現一些什麼問題或者變化。然而當一個數據量變化的時候,往往其他的數據也會發生變化。所以我們需要清晰什麼數據之間是正相關,什麼是反相關,他們之間的關系,在什麼情況下是成立的。譬如正常收藏的比例跟轉化率是正相關的,但是這幾天他們是反相關的。轉化率越掉,收藏率可能就越高。
我就談談數據分析的框架,我估計這些東西別人懶得講,所以我講一下。
至於什麼工具看什麼數據讓別人講吧。
碼字有些累。謝謝
⑸ 電商數據分析需要統計哪些指標
數據指標
1.電商總體運營指標
數據指標
電商總體運營整體指標主要面向的人群電商運營的高層,通過總體運營指標評估電商運營的整體效果。電商總體運營整體指標包括四方面的指標:
(1)流量類指標
獨立訪客數(UV),指訪問電商網站的不重復用戶數。對於PC網站,統計系統會在每個訪問網站的用戶瀏覽器上「種」一個cookie來標記這個用戶,這樣每當被標記cookie的用戶訪問網站時,統計系統都會識別到此用戶。在一定統計周期內如(一天)統計系統會利用消重技術,對同一cookie在一天內多次訪問網站的用戶僅記錄為一個用戶。而在移動終端區分獨立用戶的方式則是按獨立設備計算獨立用戶。
頁面訪問數(PV),即頁面瀏覽量,用戶每一次對電商網站或著移動電商應用中的每個網頁訪問均被記錄一次,用戶對同一頁面的多次訪問,訪問量累計。
人均頁面訪問數,即頁面訪問數(PV)/獨立訪客數,該指標反映的是網站訪問粘性。
(2)訂單產生效率指標
總訂單數量,即訪客完成網上下單的訂單數之和。
訪問到下單的轉化率,即電商網站下單的次數與訪問該網站的次數之比。
(3)總體銷售業績指標
網站成交額(GMV),電商成交金額,即只要網民下單,生成訂單號,便可以計算在GMV裡面。
銷售金額。銷售金額是貨品出售的金額總額。
註:無論這個訂單最終是否成交,有些訂單下單未付款或取消,都算GMV,銷售金額一般只指實際成交金額,所以,GMV的數字一般比銷售金額大。
客單價,即訂單金額與訂單數量的比值。
(4)整體指標
銷售毛利,是銷售收入與成本的差值。銷售毛利中只扣除了商品原始成本,不扣除沒有計入成本的期間費用(管理費用、財務費用、營業費用)。
毛利率,是衡量電商企業盈利能力的指標,是銷售毛利與銷售收入的比值。如京東的2014年毛利率連續四個季度穩步上升,從第一季度的10.0%上升至第四季度的12.7%,體現出京東盈利能力的提升。
2.網站流量指標
數據指標
(1)流量規模類指標
常用的流量規模類指標包括獨立訪客數和頁面訪問數,相應的指標定義在前文(電商總體運營指標)已經描述,在此不在贅述。
(2)流量成本累指標
單位訪客獲取成本。該指標指在流量推廣中,廣告活動產生的投放費用與廣告活動帶來的獨立訪客數的比值。單位訪客成本最好與平均每個訪客帶來的收入以及這些訪客帶來的轉化率進行關聯分析。若單位訪客成本上升,但訪客轉化率和單位訪客收入不變或下降,則很可能流量推廣出現問題,尤其要關注渠道推廣的作弊問題。
(3)流量質量類指標
跳出率(Bounce Rate)也被稱為蹦失率,為瀏覽單頁即退出的次數/該頁訪問次數,跳出率只能衡量該頁做為著陸頁面(LandingPage)的訪問。如果花錢做推廣,著落頁的跳出率高,很可能是因為推廣渠道選擇出現失誤,推廣渠道目標人群和和被推廣網站到目標人群不夠匹配,導致大部分訪客來了訪問一次就離開。
頁面訪問時長。頁訪問時長是指單個頁面被訪問的時間。並不是頁面訪問時長越長越好,要視情況而定。對於電商網站,頁面訪問時間要結合轉化率來看,如果頁面訪問時間長,但轉化率低,則頁面體驗出現問題的可能性很大。
人均頁面瀏覽量。人均頁面瀏覽量是指在統計周期內,平均每個訪客所瀏覽的頁面量。人均頁面瀏覽量反應的是網站的粘性。
(4)會員類指標
注冊會員數。指一定統計周期內的注冊會員數量。
活躍會員數。活躍會員數,指在一定時期內有消費或登錄行為的會員總數。
活躍會員率。即活躍會員占注冊會員總數的比重。
會員復購率。指在統計周期內產生二次及二次以上購買的會員占購買會員的總數。
會員平均購買次數。指在統計周期內每個會員平均購買的次數,即訂單總數/購買用戶總數。會員復購率高的電商網站平均購買次數也高。
會員回購率。指上一期末活躍會員在下一期時間內有購買行為的會員比率。
會員留存率。會員在某段時間內開始訪問你的網站,經過一段時間後,仍然會繼續訪問你的網站就被認作是留存,這部分會員占當時新增會員的比例就是新會員留存率,這種留存的計算方法是按照活躍來計算,另外一種計算留存的方法是按消費來計算,即某段的新增消費用戶在往後一段時間時間周期(時間周期可以是日、周、月、季度和半年度)還繼續消費的會員比率。留存率一般看新會員留存率,當然也可以看活躍會員留存。留存率反應的是電商留住會員的能力。
⑹ 如何做電商數據分析
主要用到的是數據透視表;主要是提供一些報表供領導參考。應該用到了5W2H分析法,SWTO矩陣分析法。
數據分析要有以下的一些步驟:明確分析思路,數據收集,收集存儲,數據整理,數據分析,數據呈現,報告撰寫等。
電商的數據分析,我個人以為,應該至少有銷量分析,包括銷量,銷售額,客戶人數,地區分布,top30等,我們公司還有頁碼分析;倉庫分析,包括庫存清倉表,庫存預警表,銷售渠道分析;購買意向性分析,季節性,促銷活動等對銷售的影響等。電商數據分析也需要採用的是數學模型分析預測的。
---------------------來自小A服務
⑺ 電商銷售額下降,應該從哪些數據維度分析
摘自:YiShop電商系統
要構建電商數據分析的基本指標體系,主要分為8個類指標
1.總體運營指標:從流量、訂單、總體銷售業績、整體指標進行把控,起碼對運營的電商平台有個大致了解,到底運營的怎麼樣,是虧是賺。
2.網站流量指標:即對訪問你網站的訪客進行分析,基於這些數據可以對網頁進行改進,以及對訪客的行為進行分析等等。
3.銷售轉化指標:分析從下單到支付整個過程的數據,幫助你提升商品轉化率。也可以對一些頻繁異常的數據展開分析。
4. 客戶價值指標:這里主要就是分析客戶的價值,可以建立RFM價值模型,找出那些有價值的客戶,精準營銷等等。
5.商品類指標:主要分析商品的種類,那些商品賣得好,庫存情況,以及可以建立關聯模型,分析那些商品同時銷售的幾率比較高,而進行捆綁銷售,有點像啤酒喝尿布的故事。
6. 市場營銷活動指標,主要監控某次活動給電商網站帶來的效果,以及監控廣告的投放指標。
7. 風控類指標:分析賣家評論,以及投訴情況,發現問題,改正問題
8. 市場競爭指標:主要分析市場份額以及網站排名,進一步進行調整
以上總共從8個方面來闡述如何對電商平台進行數據分析,當然,具體問題具體分析,每個公司的側重點也有所差異,所以如何分析還需因地制宜。
⑻ 電商運營數據分析指標有哪些
1)總體運營指標:從流量、訂單、總體銷售業績、整體指標進行把控,起碼對運營的電商平台有個大致了解,到底運營的怎麼樣,是虧是賺。2)網站流量指標:即對訪問你網站的訪客進行分析,基於這些數據可以對網頁進行改進,以及對訪客的行為進行分析等等。
3)銷售轉化指標:分析從下單到支付整個過程的數據,幫助你提升商品轉化率。也可以對一些頻繁異常的數據展開分析。
4)客戶價值指標:這里主要就是分析客戶的價值,可以建立RFM價值模型,找出那些有價值的客戶,精準營銷等等。
5)商品類指標:主要分析商品的種類,那些商品賣得好,庫存情況,以及可以建立關聯模型,分析那些商品同時銷售的幾率比較高,而進行捆綁銷售。
6)市場營銷活動指標,主要監控某次活動給電商網站帶來的效果,以及監控廣告的投放指標。
7)風控類指標:分析賣家評論,以及投訴情況,發現問題,改正問題。
8)市場競爭指標:主要分析市場份額以及網站排名,進一步進行調整。