⑴ 如何應用大數據進行保險行業的數據分析
要分析,先採集。
對於保險行業來說,這個很有必要。
保險行業太大,太雜,因此信息量很大。
保險公司需要知道目前的行業發展情況,競爭對手的情況,產品公司的形象等,這些數據基本上來源於互聯網的公開信息,論壇,貼吧,微信,微博等。
保險公司最為迫切的事情是:通過先進的信息採集技術,建立完善的輿情監測機制。
Web是一個巨大的資源寶庫,目前頁面數目已超過800億,每小時還以驚人的速度增長,裡面有你需要的大量有價值的信息,例如潛在客戶的列表與聯系信息,競爭產品的價格列表,實時金融新聞,供求信息,論文摘要等等。
可是由於關鍵信息都是以半結構化或自由文本形式存在於大量的HTML網頁中,很難直接加以利用。
實施以後,能夠獲得大量的利益:
對目標網站進行信息自動抓取,支持HTML頁面內各種數據的採集,如文本信息,URL,數字,日期,圖片等
♦ 用戶對每類信息自定義來源與分類-采3453輿情4533集-
♦ 可以下載圖片與各類文件
♦ 支持用戶名與密碼自動登錄
♦ 支持命令行格式,可以Windows任務計劃器配合,定期抽取目標網站
♦ 支持記錄唯一索引,避免相同信息重復入庫
♦ 支持智能替換功能,可以將內容中嵌入的所有的無關部分如廣告去除
♦ 支持多頁面文章內容自動抽取與合並
♦ 支持下一頁自動瀏覽功能
♦ 支持直接提交表單
♦ 支持模擬提交表單
♦ 支持動作腳本
♦ 支持從一個頁面中抽取多個數據表
♦ 支持數據的多種後期處理方式
♦ 數據直接進入資料庫而不是文件中,因此與利用這些數據的網站程序或者桌面程序之間沒有任何耦合
♦ 支持資料庫表結構完全自定義,充分利用現有系統
♦ 支持多個欄目的信息採集可用同一配置一對多處理
♦ 保證信息的完整性與准確性,絕不會出現亂碼26禁止9盜用0
♦ 支持所有主流資料庫:MS SQL Server, Oracle, DB2, MySQL, Sybase, Interbase, MS Access等
⑵ 數據挖掘在保險業中的應用
目前擻據挖掘的應用領域包括以下八個方面:
金融、醫療保健、市場業、零售業、製造業、、工程和科學、保險業
在選擇一種數據挖掘技術的時候,應根據問題的特點來決定採用哪種數據挖掘形式比較合適。應選擇符合數據模型的演算法,確定合適的模型和參數,只有選擇好正確的數據挖掘工具,才能真正發揮數據挖掘的作用。
擴展閱讀:【保險】怎麼買,哪個好,手把手教你避開保險的這些"坑"
⑶ 大數據可以應用於保險行業嗎
大數據是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據技術,是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
⑷ 數據在營銷中的應用有哪些
隨著互聯網抄的發展,大數據技術、AI演算法技術應用越加普及。大數據在營銷中的應用也越加廣泛。例如,1.對用戶個體特徵與行為的分析,例如MobTech企業覆蓋138億+設備,自有數據龐大,利用自有數據與第一方數據匹配,幫助企業做精準的用戶畫像和標簽補充,進而通過數據分析進行廣告與營銷信息的精準推送,現在的RTB廣告等應用則向我們展示了比以前更好的精準性,而其背後靠的是大數據支撐。MobTech用戶標簽維度達到6000+,覆蓋性別、年齡段、收入水平預估、消費傾向、媒介使用傾向等,精細化描述用戶的各維度數據。
⑸ 利用大數據分析將保險業風險防控做到極致
利用大數據分析將保險業風險防控做到極致
互聯時代,特別是移動互聯網日漸普及之後,大數據的搜集變得更為方便和可行,大數據的應用價值受到了各行各業的關注,甚至大數據本身也成了一個專門產業。保險作為基於大數法則運營發展的商業行為,對大數據的利用有著天然的傾向性。筆者圍繞風險防控這一經營實務,圍繞核保、核賠這兩大關鍵節點,探討大數據分析在風險防控中的應用,分析優勢性,指出限制性,並基於行業現狀對大數據分析的發展提出建議。
保險業面臨風險控制新挑戰
雖然風險防控是保險業發展過程中永恆的課題,但是隨著經濟社會的發展,新風險點層出不窮,惡意欺詐手段不斷翻新,保險業風險防控受到的更為嚴峻的沖擊。具體表現為:
1.行業競爭倒逼核保和理賠速度的提升,可能帶來核保、核賠質量下降的負面影響。從純理論角度和最理想化的角度來講,核保和核賠這兩個環節是可以為保險公司屏蔽所有逆選擇和道德風險的。但付出的代價是用大量的人力對每個投保和理賠申請都進行大量的細致調查。這在保險公司實際運營中是不可能的。特別是在行業競爭越來越激烈的今天,為提升客戶體驗,保險公司的投保條件愈發寬松,核保核賠速度快,甚至免核保、免體檢、快速賠付已經成為保險公司吸引客戶的「標配」所在。各家公司千方百計提高服務速度,核保核賠部門往往要承受客戶和銷售部門的雙重壓力。在此情況下,雖然保險公司的保費收入有了較大增長,但是承受的風險沖擊將明顯增大。公司管理層對業績增長的期待,或多或少沖淡了本該固若金湯的風控意識。
2.互聯網保險的發展,客觀上增加了風險控制的難度。如今,網路銷售、移動互聯網銷售日益被保險公司所重視。各種保險銷售網站,成為了保險公司新的保費增長點。甚至客戶通過手機微信等軟體終端,就可以輕松完成投保或理賠過程,在這種情況下,材料真實性驗證難度較大,信息不對稱性更為突出,機會型欺詐風險增加。異地出險的增加,也對理賠後續工作提出較高要求,容易出現保險服務流程銜接的空白。在傳統保險銷售過程中,銷售人員與客戶面對面地溝通,其實也是一種了解客戶的過程。但是互聯網保險的發展讓這個過程消失。核保部門失去了一道天然屏障。這些都是增加了風險控制的難度。
大數據分析在保險業風險防控中的實際意義
雖然互聯網技術的發展,給傳統思維下的風險防控帶來了巨大的挑戰。但是筆者認為,任何新技術的進步都是雙刃劍。而且解鈴還須系鈴人,互聯網技術帶來的「麻煩」也必將由互聯網技術本身來開出葯方。這個葯方就是大數據分析。
IBM公司曾用5個特徵來描述大數據,既大量、高速、多樣、低價值密度、真實性。這些特徵其實也表明了大數據對風險防控的意義。
1.大數據時代下,核保環節通過大數據分析有條件對客戶進行系統性風險掃描。具體來講,在傳統核保過程中,客戶告知什麼,保險公司就審核什麼。核保人員要從有限的告知信息中,發現風險點的蛛絲馬跡。這個過程中的風控主要依靠客戶的誠信水平和核保人員的工作經驗。而且大量的投保告知,也挑戰了客戶的耐心。面對大量的提問,客戶很有可能引起反感,不認真填寫告知內容或乾脆放棄購買保險產品。但在大數據條件下,保險公司有條件從資料庫中獲取客戶的大量相關信息。比如通過了解客戶的就醫記錄,可以准確推斷客戶的健康狀況;通過查詢客戶在各家保險公司的既往投保記錄,可以分析投保人有無重復投保、短期內大額投保等高風險行為,等等。這些都將打破既往核保的管理思路,使得核保過程更加精確化。同時客戶需要進行的投保告知大大減少,只要授權保險公司查詢相關信息,即可快速得到核保結果。
2.大數據時代下,核賠環節通過大數據分析更可能發現理賠欺詐的線索,堵住風險漏洞。傳統的核賠過程中,主要靠核賠人員的經驗甄別風險,靠調查人員有意識的排查堵住理賠欺詐的發生。這種情況下,人為製造保險事故、虛報並不真實存在的保險事故、誇大保險事故損失金額,都成為可能發生的情況。但在大數據條件下,保險公司不同地區的既往理賠數據,甚至不同保險公司之間的理賠數據有可能匯聚成一個超級資料庫。任何理賠申請,都可以先經過資料庫的檢驗。
3.大數據分析輔助風險控制的理論研究,已經有了一定的積累,為進一步應用打下了基礎。近年來,大數據的開發應用不僅得到了實務界的關注,也吸引了理論界進行更為細致的研究,並取得了一定成果。例如欺詐分析技術,就是綜合了大數據模型、統計技術和人工智慧在反保險欺詐領域的一項應用。目前這項技術已有了比較完整的理論模型,建立了相應的演算法體系,具體包括有監督演算法和無監督演算法。筆者認為,這些理論研究雖然對保險實務從業者來講有一些晦澀,但是今後的大數據分析甚至人工智慧在保險業的應用,就是建立在這些理論研究基礎之上的。
基於大數據技術提升保險業風險控制
結合大數據技術本身的發展要求,以及當前保險公司實際運營情況。筆者在這部分將提出大數據時代提升保險業風險控制的具體工作建議。
1.以資料庫建設為基礎,在內部數據資源整合的基礎上,爭取建立全行業共享的大數據平台。在這里所討論的所有大數據分析的優勢,都建立在保險公司能夠收集到海量有價值數據的基礎之上。這種數據資源的整理,首先是公司內部資源的整理。特別是對於混業經營的大型金融集團來說,內部已有的數據資源整合就已經是非常偉大的成就。要讓各家公司共享信息,註定是艱難的,這需要行業協會、監管部門的推動,需要各家公司站在更長遠的角度展望保險業的發展。
2.保險公司要千方百計提升IT技術水平,儲備大數據分析的技術力量。大數據分析對資料庫技術的要求是比較高的,公司網路系統和數據計算能力面臨考驗。更為重要的是,如果要想進一步開發大數據資源,就必須有專門的統計分析人才。技術儲備,不是過往運營數據分析等簡單的數據開發,而是一整套科學的體系。保險公司有必要提前進行技術儲備。
3.大數據分析過程中,要特別注意數據安全和客戶信息的保密管理。大數據和互聯網一樣,也是一把雙刃劍。保險公司挖掘好這座寶藏,能夠在風險防控上取得事半功倍的效果。但同時也擔負著維護數據安全的重任。海量的個人信息數據存儲在保險公司,一旦泄露後果不堪設想。單個的數據泄露就可能引起客戶的訴訟。批量的數據泄露,可能給公司帶來的就是滅頂之災。從法務角度來講,保險公司在引用客戶信息之前,要取得客戶授權,規避法律風險。同時要盡可能依靠大數據分析,通過簡單的客戶信息就推斷出某類業務的風險。
總之,風險控制是保險公司穩健經營的重要一環。在大數據時代,保險業必然要利用新技術手段,將風險防控工作做到極致,為公司和行業的發展創造價值。
⑹ 數據分析在企業中的應用有哪些
1、管理工作簡單化
復雜的運營管理過程用科學思維分析,聚焦數據的主要矛盾點,配以簡潔的數據呈現,且盡可能地簡化概念來解決,不僅加速了決策效率,也往往還會收到柳暗花明的效果。一個簡要的匯總不亞於面面俱到陳列,一組KPI呈現也比數十頁的PPT效果要強很多。
2、優化運營管理流程
通過對經營數據分析,我們了解企業運營資源如何合理分配,流程哪裡需要優化。比如,通過對銷售額波動分析,我們確認是銷售單價的影響還是成交數量的變化;是訪問流量的變化還是轉換率的變化。通過對庫存周轉率分析,我們可以推斷是采購流程有待完善還是備貨策略需要變更。
3、創造更大的價值效益
商業價值的創新來源於數據價值的有效轉換,價值可以通過數據呈現。生產中,當NPI導入量產後,每多久需對ERP系統損耗系數進行調整?哪些製程、哪些料號需要調整?需要通過對生產過程數據進行分析來決定。通過月度或季度生產損耗或不良品的分析,找到降低物料的損耗系數的關鍵才能提升直通率,降低物料成本的同時才能創造更大的收益。
4、拓展新業務新商機
數據分析可以避免思維的盲點。有人把數據分析過程是比喻成醫生把脈看病的過程。除了不僅要提供體檢數據,更得要提供疾病醫治與預防的方案。一份新備貨方案,一條新的流水線的布局,一個新的客戶導入或一個新業務模式的開發,均離不開數據預測、分析與推演。
關於數據分析在企業中的應用有哪些,環球青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑺ 數據分析建模在保險行業中有哪些應用
數據分析在保險行業有著較大的應用前景,尤其是在產險方面,其在美國已經有了較 為成熟的應用。在國內保險業可以說是處於起步階段,這也是由國內保險行業的發展階段所決定的。其中最為公認的幾方面應用包括:1)確定費率 2)獲得新客戶 3)保留舊客戶 4)檢測詐騙索賠
⑻ 數據分析可以用哪些營銷策略
一、營銷策略
數據准備就緒,要開始執行營銷活動,並讓各種目標落地,先要做的工作就是營銷計劃的制定,這就屬於數據在營銷策略層面的價值體現。企業把大目標分解到市場部門,市場部門會再次細分,落實到市場經理,此時,數據營銷人員就要幫助市場經理細分目標市場,細分用戶,並評估數據質量。
二、數據創意
常聽有廣告創意,其實數據營銷也有創意,而且對於大數據營銷來說,數據創意是非常重要的步驟,具有極大的價值。
數據創意是根據知識和經驗,結合內外部各種數據資源,創造數據變現的方式。雖然是同樣的數據,但在不同的數據創意下,其體現的價值區別很大。
三、商業智能
營銷大數據分析可能需要從很多個維度和點切入,得到很多個相對獨立的結論,而要產生能指導市場行為的結論,可能需要將若干個結論整合成一個結論才可以,如何整合呢?
經驗能一成程度上判斷,但經驗並不靠譜,因為一切都是在變動中的,從來沒有一成不變的東西。用戶行為的影響因素往往是非常多的,要將這寫因素有效的整合並發現有價值的信息必須要藉助數據挖掘解決問題。
關於數據分析可以用哪些營銷策略,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。