導航:首頁 > 電商促銷 > 電子商務用戶數據分析

電子商務用戶數據分析

發布時間:2022-04-14 09:23:57

Ⅰ 電商數據分析常用方法有哪些

1.對比分析


橫向對比:簡單的說就是和誰對比?假如說我們上個月店鋪的成交額增長了30%,那麼我們是不是應該開心呢?


這里我們還要參考競爭對手的成交額,數據時代,我們可以很輕易的拿到競爭對手的相關數據。


縱向對比:我們可以把近15天的成交額以線條的形式顯示出來,這樣就可以很清楚的看到近期的成交額是否達到預期,有沒有下降趨勢,當然我們也可以以季度、月或周為單位。


2.轉化分析


這里牽涉到一個問題,評判一家電商企業需要用到的一些日常統計指標:


店鋪的目標用戶數量:一家店鋪的成交量,反映的是這家店鋪對於市場的影響以及用戶對於產品的滿意度。


平均消費金額:店鋪每年平均每位用戶消費了多少,以此來定位目標人群,確定是否達到盈利的指標。


用戶的復購率:判別產品滿意度,假如用戶購買過一次後,還會購買第二次,說明用戶對於你的產品還是很滿意的,這樣既節省了市場推廣費用,用戶也會推薦給更多朋友來夠買。


3.留存分析


我們通過活動等形式把用戶引流到我們的流量池裡,但是經過一段時間後,用戶可能就會慢慢的流失了。那些留下來或者經常訪問我們店鋪的用戶稱之為留存。


我們常常用到的日活躍用戶量、月活躍用戶量、季度活躍用戶量,來檢測我們店鋪的流量。有的時候可能會看到我們的日活,在一段時期內都是逐漸增加的,以為是非常好的現象,但是如果沒有做留存分析的話,這個結果很可能是一個錯誤的。


留存是產品的核心,用戶只有留下來,我們的產品才能不斷增長。如果我們什麼都不做的話,用戶很快的就流失了。


4.產品比價


大部分電商公司會頻繁搞促銷,一般來說每次打的旗幟無非是全網最低,但是如何才能確定是全網最低呢?


這時候需要我們去搭建一個比價系統,這個比價系統的目的主要是為了去抓取各大電商平台商品的價格。通過各大電商平台的價格以及優惠額,來制定你自己的策略。


關於電商數據分析常用方法有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅱ 電商數據分析的意義是什麼

電商數據分析的意義在於:
發現問題,並且找到問題的根源,最終通過切實可行的辦法解決存在的問題。

基於以往的數據分析,總結發展趨勢,為網路營銷決策提供支持。

Ⅲ 電商數據分析應該從哪些方面進行分析

我一直在問答談運營技術。但是我認為,我最強在於數據跟視覺。
我認為,競爭到最後,運營跟運營之間的差距是從數據跟視覺開始區分的。
今天我們恰巧有時間來談談數據。
什麼是數據分析思維?
數據分析思維,我認為是:把行為轉化為數據-通過數據反推行為。
我舉個例子:
你經常來我店鋪購買姨媽巾。
你今天過來買姨媽巾,我就知道你大概一周內要來大姨媽。根據你購買的數量跟規格,我就能推斷你一次大姨媽來多久,量大概多少。拉出來你半年的購買時間,我就可以推斷你多久一次大姨媽是不是穩定。
如果有兩個月沒看到你購買姨媽巾了。。。那肯定是在兩個月前,你男朋友的雨衣破了。
拉出來你男朋友的購買記錄,我就知道,這個店鋪的雨衣可能不合格。
為了驗證他是不是不合格,我們去看看他半年內的復購率是不是遠低於同行。
嗯,就因為你沒有買姨媽巾,我懷疑這個店鋪的雨衣不合格。
這就是數據分析的基本思維。
學會數據分析的基本思維,只能說,你勉強具備數據分析的可能。
那麼做數據分析。需要明白幾個東西。
1、數據樣本:數據樣本如果選擇不合理,那麼結果完全就是錯誤的。譬如我去抓取一個定位40歲大媽的姨媽巾店鋪,要中國女性的姨媽周期,那根本就不科學好嗎。這是青春期跟更年期的差異(此例子說明林慕白同學同樣對婦科知識有所涉獵,歡迎廣大適齡未婚女性知友來信咨詢)。
實戰中經常犯的例子是:平銷轉化率很好的單品,在聚劃算賣不好。平銷轉化率不好的某些單品,聚劃算反而會賣爆?為什麼呢?想想,別問我,自己想。鬧不明白就別嘗試做電商的數據分析了。
2、數據選擇:實際上我們會遇到很多的數據,但是有些數據不一定是我們想要的。就像我們這輩子會遇到很多很好的女生,但是我們很難明白,誰才能更好陪伴我們走完這一生。這個事情無法舉例,我這邊給一份試題:
現在我們店鋪需要做優惠券促銷,目的要提高客單價。
好,你告訴我要做滿100減10元。
嗯,很好,那你現在告訴我,為什麼是滿100而不是滿110,為什麼是減10元而不是減20。拿出來你的數據。
嗯,不要問我怎麼弄。也不要懷疑我是不是真的能分析出來,我真的能。
3、動態變化:我們一般最常用的,就是通過數據之間的變化,來分析可能出現一些什麼問題或者變化。然而當一個數據量變化的時候,往往其他的數據也會發生變化。所以我們需要清晰什麼數據之間是正相關,什麼是反相關,他們之間的關系,在什麼情況下是成立的。譬如正常收藏的比例跟轉化率是正相關的,但是這幾天他們是反相關的。轉化率越掉,收藏率可能就越高。
我就談談數據分析的框架,我估計這些東西別人懶得講,所以我講一下。
至於什麼工具看什麼數據讓別人講吧。
碼字有些累。謝謝

電子商務該如何做數據分析

當用戶在電子商務網站上有了購買行為之後,就從潛在客戶變成了網站的價值客戶。電子商務網站一般都會將用戶的交易信息,包括購買時間、購買商品、購買數量、支付金額等信息保存在自己的資料庫裡面,所以對於這些客戶我們可以基於網站的運營數據對他們的交易行為進行分析,以估計每位客戶的價值,及針對每位客戶的擴展營銷的可能性。

電子商務相對於傳統零售業來說,最大的特點就是一切都可以通過數據化來監控和改進。通過數據可以看到用戶從哪裡來、如何組織產品可以實現很好的轉化率、你投放廣告的效率如何等等問題。基於數據分析的每一點點改變,就是一點點提升你賺錢的能力,所以,電子商務網站的數據分析顯得尤為重要。首先,我們要來了解一下數據分析對於一個網站的重要性。筆者並不從理論方面來論證數據分析的重要性,而是從各方對這一方面的動向來了解。2011年5月25日,阿里巴巴宣布推出數據門戶,並正式啟用新域名,新推出的數據門戶根據4500萬 中小企業用戶的搜索、詢單、交易等電子商務行為進行數據分析和挖掘,為中小企業以及電子商務從業人士等第三方提供綜合數據服務。馬雲曾表示「數據」將是阿 里巴巴未來十年發展的戰略核心。現已正式開放的部分為面向全體用戶的宏觀行業研究模塊,由行業搜索動態趨勢圖、專業化行業分析報告、細分行業和地區的內貿分析和針對行業各級產品的熱點分析,以及實時行業熱點資訊等部分構成,並且為免費提供。到2011年底阿里巴巴還將適時陸續推出數據門戶其他部分應用。

Ⅳ 如何進行電商網站數據分析

一般而言,電子商務網站數據分析包括了流量來源的分析及流量效率的分析,還有網站內部數據流的分析,用戶特徵分析這四個部分。

首先,電商網站若是想接到單子,肯定要保證流量。可是獲取流量是需要成本的,怎麼樣才能降低流量成本屬於電商網站運營最重要的一個部分,其中流量來源分析屬於重點,如在對電商網站進行數據分析的時候,要先明白用戶都是從哪裡點擊過來的,哪些網站可謂我們帶來更多的訂單,哪些流量來源是真實的,哪些屬於虛假的等等。弄清楚這些之後,才能穩定老客戶,發展新客戶,將網站推廣的更好。

其次,流量效率分析也是必不可少的一部分,在進行電商網站數據分析的時候流量效率指的是流量達到了網站是否屬於真實的流量。那麼,在具體分析的時候,要看下它的到達率,PV/IP比還有就是訂單轉化率等等。其中訂單轉化率是最重要的一方面,若沒有訂單轉換了一切都沒意義。

最後,怎樣進行電商網站數據分析也離不開站內數據流分析這個方面。這里所說的站內數據流的分析,主要是用於分析購物流程順暢程度及網站產品分布合理與否等等,然後再根據這些來分析頁面流量排名及場景轉化率分析,站內搜索分析及客戶為何離開頁面分析等問題的分析等等,查看問題所在,然後想辦法解決,才能讓網站產品得到更好的推廣。

Ⅵ 淺談電子商務的數據分析

淺談電子商務的數據分析

隨著科學技術的發展,電子商務技術也在逐步的提升,人們在工作中需要的數據處理也越來越多。下面我們就以電子商務為例,為大家簡單的介紹一下進行數據分析的目的與流程。

一、進行數據分析的目的

人們在工作和生活中需要對數據進行分析,主要有兩個方面:

1、為了更好的發現問題,並且在發現問題的過程中,找到問題的根源,通過採用具體可行有效的辦法,對存在的問題進行解決。

2、為了總結發展趨勢。這里的數據分析就是在以往的數據基礎上,實現對總體數據的分析與總結,主要表現在為網路營銷提供解決支持的辦法。

數據分析在電子商務裡面運用的十分廣泛,可以依據相關的規定,對這些數據進行相關的分類,在依據實際的運營情況下,保證網站的可持續發展。下面我們就來具體的分析一下進行數據分析的流程。

二、進行數據分析的流程

在電子商務方面,進行的數據分析可以分為以下幾個方面。

1、對關鍵數據進行分析

由於不同的電子商務,其定位及針對的客戶群體不同,因此其實際的運營效果也不一樣,因此需要對網站內的關鍵數據進行分析,以此來判斷網站是否在正常運行。網站的關鍵數據包含很多方面,具體為:

(1)、要對網站的獨立用戶的訪問量進行總結分析,換句話說就是對電腦進行網站的訪問數量進行統計,需要注意的是電腦訪問數量與IP地址訪問不是同一個概念。

(2)、統計積極訪問者、忠實訪問者的比率及客戶的轉化率。

(3)、對客戶單價、滿意度。回訪率及投資回報率都要進行一定的數據統計,以此來分析整個網站的實際運營狀況。

2、對收集的數據進行分

網站數據的收集,是進行數據分析前的重要一步,因為它直接決定了分析結果的合理性。因此做好完整、合理、真實的數據收集工作是十分必要的。在這個過程中要注意對網站後台數據、搜索引擎數據、統計工具的數據等進行分析,因為這些數據看似雜亂,實際上是反應網站是否正常運行及運轉狀態的重要標志。

綜上所述,在對電子商務進行數據分析的過程中,不僅要注意以上兩點,還要針對這些數據進行量化分析,在完成所有步驟之後再開始制定方案。只有這樣,才能客觀的反應出公司的實際運轉狀態,才能達到預想的目的。

以上是小編為大家分享的關於淺談電子商務的數據分析的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅶ 概述電子商務數據分析應用的幾個主要步驟及課程中提及的知識要點

電商數據分析的步驟日常性數據分析

流量相關數據:IP丶PV丶在線時間丶老用戶比例丶新用戶比例。

訂單相關數據:總訂單丶有效訂單丶訂單有效率丶總銷售額丶客單價丶毛利率。

轉化率相關數據:下單轉化率丶付款轉化率。

Ⅷ 電商數據分析需要哪些工具呢

進行電商數據分析,找一個靠譜的數據分析平台就可以,情報通是市面上電商數據分析比較好的工具。

情報通可以提供淘系數據,包含天貓和淘寶的全類目行業銷售數據、品牌銷售數據、熱銷寶貝數據、價格分布數據、站內推廣數據、熱搜詞數據等,基本滿足日常調研的幾個維度。使用情報通,需要按照套餐付費,基本上老客戶都是常年合作的,可以詳細的查詢到行業數據銷售數據等。目前情報通能看到國內電商平台淘系、京東的行業數據,境外Lazada等平台的行業數據,以及抖音直播平台的電商數據等。

要想了解更多關於電商數據分析的問題,建議關注情報通。情報通中的店鋪分析模塊可以查看競爭對手、自己和分銷渠道等任意店鋪最近、本月和上月所有寶貝銷量、均價和銷售額,每天密切跟蹤競爭對手、自己店鋪和分銷渠道等任意店鋪改名、調價每個記錄,通過製作各版塊分析圖支持同比數據,通過分析找到全新表現出色的分銷渠道。

Ⅸ 電商數據分析要掌握哪些數據指標

運營模塊


運營的主要職責是達成銷售目標,同時控制運營成本。所以在這一模塊我們主要關注三個數據指標:業績達標率、業績增長率、銷售利潤額。這三個指標非常好理解,主要是用來綜合評估運營水平。


商品模塊


這一模塊主要涉及兩個職能,商品企劃和商品運營。


商品企劃的主要職能是在一個銷售周期內,對商品的品類、價格帶、風格、銷售進度進行整體把控,避免使用單一產品沖業績。


商品運營的主要職能是負責商品的上架、入庫以及主推策劃,通常流程是:測款-養款-爆款-返單。當然,一個店鋪也不能打造過多的爆款,爆款的增多會損害品牌調性,到這一旦折扣下降就會引起消費者流失的局面。


市場模塊


市場模塊是僅次於運營的第二大模塊,同時又和運營的工作密不可分。主要包括市場推廣投放、會員維護、活動包裝等等。


其中,推廣是一個店鋪的重中之重,也是我們數據分析的主要對象,推廣包括包括付費和免費兩種渠道,付費渠道比如我們熟知的直通車、鑽展等等,免費推廣如微博、貼吧等等。定時的進行會員維護會促進會員沉澱,活躍的會員可以有效的節省推廣費用。


視覺設計模塊


這部分模塊中,我們主要分析的還是店鋪流量的漏斗轉化路徑。主要涉及的包括:頁面邏輯、標簽分類、主推商品。這部內容對應的就是我們常說的流量分析,分析客戶的訪問路徑,並結合漏斗模型,看看那部分的轉化對最終的轉化率影響最大並進行優化。


關於電商數據分析要掌握哪些數據指標,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

閱讀全文

與電子商務用戶數據分析相關的資料

熱點內容
廣東省內兩天一夜的拓展培訓方案 瀏覽:881
網路營銷渠道的組成要素是 瀏覽:500
財務公司策劃方案 瀏覽:693
師資培訓項目策劃方案 瀏覽:318
目標市場營銷策略有哪幾種類型 瀏覽:958
城固縣電子商務發展意見 瀏覽:342
2013年上海電子商務交易額 瀏覽:44
重慶旅遊活動策劃方案 瀏覽:731
ole市場營銷管理手冊 瀏覽:590
市場營銷實踐體會 瀏覽:710
會展管理策劃方案怎麼寫 瀏覽:597
釘釘的推廣方案 瀏覽:229
微信群裂變營銷 瀏覽:416
家裝微信營銷聊天 瀏覽:625
製作一份賽事贊助的策劃方案 瀏覽:410
新店開業促銷活動方案 瀏覽:87
單身派對策劃方案獎品 瀏覽:863
上海鋼銀電子商務有限公司地址 瀏覽:658
kfc市場營銷策劃 瀏覽:754
幼兒園暑期師資培訓方案 瀏覽:456