⑴ 推薦系統的研究主要包括哪些方面
推 薦系統的研究主要包括以下幾個方面:
(1)用戶信息獲取和建模。
早期的推薦系統只需獲取簡單的用戶信息,隨著推薦系統 發展, 推薦系統由簡單的信息獲取轉變為和用戶交互的系統, 需要考慮用戶多興趣和用戶興 趣轉變的情況,將數據挖掘應用到用戶信息獲取中,挖掘用戶的隱性需求。
(2)推薦演算法研究。
要實現被顧客接受和認可的個性化推薦,設計准確、高效率的個 性化推薦演算法是核心。基於內容的推薦和協同過濾是最主要的兩種。為了克服各自的缺點, 可以將各種推薦方法混合使用,以提高推薦精度和覆蓋率。同時,信息獲取和人工智慧,以 及模糊推薦等相關領域的引入擴寬了推薦演算法的思路。
(3)推薦系統的評價問題。
要使推薦系統為廣大用戶所接受,必須對推薦系統作出客 觀綜合的評價。 推薦結果的准確性和可信性是非常重要的兩個方面。 如何對推薦結果的准確 性進行判定, 如何把推薦結果展示給用戶以及如何獲取用戶對推薦結果的評價都是需要深入 研究的問題。
(4) 推薦系統的應用和社會影響研究。
需要建立推薦系統在其他應用領域的應用框架, 研究如何與企業其它信息系統的集成。
⑵ [英語高手進]高分求翻譯。不要用工具!
我是不會
⑶ 求對電子商務推薦系統的研究與分析的論文和開題報告
可以去淘寶的《翰林書店》店鋪,店主應該能幫你下載到這論文
⑷ 關於數據挖掘中推薦系統的應用
不清楚你說的數據挖掘是指那個方面,我自己了解的數據挖掘是網路數據的挖掘。
這種挖掘技術在行業中有大量的應用:
⑸ 求有關電子商務系統推薦技術的應用研究論文
[摘 要] 隨著電子商務的不斷深入發展,電子商務推薦系統的應用更加廣泛。文章主要介紹了目前應用較廣的幾種電子商務推薦系統中的推薦技術,並對這幾種推薦技術存在的問題進行了分析。
[關鍵詞] 電子商務 推薦系統 推薦技術
一、引言
隨著網路的廣泛普及,電子商務對傳統的商貿活動產生了革命性的變化,產生從以商品為中心到以客戶為中心的商業模式的轉變。新的商業環境在為企業提供新的商機的同時,也對企業提出了新的挑戰。圍繞客戶進行服務,為客戶提供所需要的商品,所以對每個客戶提供個性化的服務已經成為必要。而電子商務推薦系統成為解決問題的重要途徑。本文研究了電子商務推薦系統中的各類推薦技術。
二、電子商務推薦系統
電子商務推薦系統定義為:利用電子商務網站向用戶提供商品信息和建議,幫助客戶決定應該購買什麼產品,模擬銷售人員幫助客戶完成購買過程。它是一個基於客戶網上購物的以商品為推薦對象的個性化推薦系統,為客戶推薦符合其興趣愛好的商品。分析客戶的消費偏向,向每個客戶具有針對性地推薦的產品,幫助客戶從龐大的商品目錄中挑選真正適合自己需要的商品。電子商務推薦系統在幫助了客戶的同時也提高了客戶對商務活動的滿意度,從而換來對電子商務站點的進一步支持。
電子商務推薦系統主要起到了三個方面的作用:首先,極大地增加了客戶,可以把網站的瀏覽者轉變為購買者,提高主動性;其次,可以提高網站相關系列產品的連帶銷售能力;最後,可以提高、維持客戶對網站的滿意度和信任度。
電子商務推薦系統具有良好的發展和應用前景。在日趨激烈的競爭環境下,電子商務推薦系統能有效保留客戶,提高電子商務網站系統能大大提高企業的銷售額。成功的電子商務推薦系統將會產生巨大的經濟效益和社會效應。
三、電子商務推薦技術
目前,電子商務推薦系統中使用的主要推薦技術有基於內容推薦,協同過濾推薦,基於知識推薦,基於效用推薦,基於關聯規則推薦,混合推薦等等。
1.基於內容的推薦。它是信息過濾技術的延續與發展,項目或對象通過相關特徵的屬性來定義,系統基於商品信息, 包括商品的屬性及商品之間的相關性和客戶的喜好來向其推薦。基於商品屬性主要是基於產品的屬性特徵模型推薦。
內容推薦技術分析商品的屬性及其相關性可以離線進行,因而推薦響應時間快。缺點是難以區分商品信息的品質和風格,而且不能為用戶發現新的感興趣的商品,只能發現和用戶已有興趣相似的商品。
2.協同過濾推薦。協同過濾推薦是目前研究最多、應用最廣的電子商務推薦技術。它基於鄰居客戶的資料得到目標客戶的推薦,推薦的個性化程度高。利用客戶的訪問信息,通過客戶群的相似性進行內容推薦,不依賴於內容僅依賴於用戶之間的相互推薦,避免了內容過濾的不足,保證信息推薦的質量。協同過濾推薦優點有:能為用戶發現新的感興趣的商品;不需要考慮商品的特徵,任何形式的商品都可以推薦。缺點是:稀疏性問題,用戶對商品的評價矩陣非常稀疏;可擴展性問題,隨著系統用戶和商品的增多,系統的性能會越來越低;冷啟動問題,如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦。
3.基於知識的推薦。在某種程度上可以看成是一種推理技術,各個方法因所用的知識不同而有明顯區別。基於知識的推薦提出了功能知識的概念。簡單的說,功能知識是關於某個項目如何滿足某個特定客戶的知識,它能解釋需要和推薦之間的關系。在基於知識的推薦看來,客戶資料可以是任何能支持推理的知識結構,並非一定是用戶的需要和偏好。
4.基於效用的推薦。它是根據對客戶使用項目的效用進行計算的,核心問題是如何為每個客戶創建效用函數,並考慮非產品屬性,如提供商的可靠性和產品的可用性等。它的優點是能在效用函數中考慮非產品因素。效用函數通過交互讓用戶指定影響因素及其權重對於大多數用戶而言是極其繁瑣的事情,因而限制了該技術的應用。
5.基於關聯規則的推薦系統往往利用實際交易數據作為數據源,它符合數據源的通用性要求。以關聯規則為基礎,把已購商品作為規則頭,推薦對象作為規則體,其中關聯規則的發現最關鍵且最耗時,但可以離線進行。其特點是實現起來比較簡潔,推薦效果良好,並能動態地把客戶興趣變化反映到推薦結果中。
6.混合推薦技術。混合推薦系統整合兩種或更多推薦技術以取得更好的實際效果。最常見的做法是將協同過濾推薦技術與其它某一種推薦技術相結合。例如,結合基於協同過濾和基於內容推薦這兩種推薦技術,盡量利用它們的優點而避免其缺點,提高推薦系統的性能和推薦質量。比如,為了克服協同過濾的稀疏性問題,可以利用用戶瀏覽過的商品預期用戶對其他商品的評價,這樣可以增加商品評價的密度,利用這些評價再進行協同過濾,從而提高協同過濾的性能。
四、總結
電子商務推薦系統,一方面有助於電子商務網站內容和結構自適應性的實現,另一方面在幫助客戶快速定位感興趣的商品的同時也為企業實現了增值。電子商務推薦系統作為有利的分析工具和促銷手段,已成為電子商務網站的競爭工具,必將獲得廣泛的應用和發展。本文對電子商務推薦系統進行了介紹,並對推薦技術進行了概述。目前國內的電子商務網站在這方面的實踐處在快速發展的階段,因此還需要繼續研究出更智能、更優化的電子商務推薦技術。
參考文獻:
[1]梁 英:電子商務個性化推薦技術研究[J].商場現代化,2007,26
[2]鄧曉輝 漆 強:淺析電子商務推薦系統[J].企業經濟,2007,08
⑹ 求:數據挖掘技術在電子商務中有哪些應用謝謝!
購買推薦,反饋分析,客戶分析等.都在用.
⑺ 什麼是電子商務推薦系統
隨著互聯網的普及抄和電子商務的發展,電子商務系統在為用戶提供越來越多選擇的同時,其結構也變得更加復雜,用戶經常會迷失在大量的商品信息空間中,無法順利找到自己需要的商品。電子商務推薦系統直接與用戶交互,模擬商店銷售人員向用戶提供商品推薦,幫助用戶找到所需商品,從而順利完成購買過程。在日趨激烈的競爭環境下,電子商務推薦系統能有效保留用戶、防止用戶流失,提高電子商務系統的銷售。
推薦系統在電子商務系統中具有良好的發展和應用前景,逐漸成為電子商務IT技術的一個重要研究內容,得到越了來越多研究者的關注。
電子商務推薦系統在理論和實踐中都得到了很大發展。但是隨著電子商務系統規模的進一步擴大,電子商務推薦系統也面臨一系列挑戰。針對電子商務推薦系統面臨的主要挑戰,本文對電子商務推薦系統中推薦演算法設計以及推薦系統體系結構等關鍵技術進行了有益的探索和研究。本文的研究內容主要包括電子商務推薦系統推薦質量研究,電子商務推薦系統實時性研究,基於Web挖掘的推薦系統研究以及電子商務推薦系統體系結構研究
⑻ 電子商務個性化推薦系統和電子商務系統什麼關系
電子商務中的推薦系統是利用數據挖掘等技術,分析訪問者在電子商務網站的訪問行為,產生能幫助訪問顧客訪問感興趣的產品信息的推薦結果.
電子商務系統規劃與建設本來就包括資料庫系統的建立,技術含量不是特高的電子商務推薦系統就是在原有的資料庫系統上新添的利用數據挖掘技術對動態的客戶訪問所返回的數據加以分析並調出客戶可能感興趣的的產品目錄。
看這里----就知道它只是在原有的系統上加了些技術模塊
根據系統功能設計的要求以及功能模塊的劃分,資料庫的設計相對較簡單。除用於銷售
商品的電子商務網站中所必須的基本資料庫表,如商品信息、用戶信息、網站信息等外,還
應包括:用於初始化數據設置的參數表、僅對有評分商品推薦起作用的顧客商品評分表、顧
客商品購買記錄表、商品聚類表、顧客聚類表、商品推薦表
專業上的問題你還真上網路知道來問。你肯定是研究生。看下我的鏈接http://www.autocontrol.com.cn/magazine/pdf/08.08.03/29.pdf,有很全的資料分析--網上的