⑴ 苏宁易购通过数据分析成功实现精准营销
在这个大数据时代,如果想要突围而出,就一定要学会对数据进行分析,才能增加实现精准营销的几率,一电商大佬苏宁易购正是借助数据分析,成功实现面膜的精准营销。可见,数据分析多么重要!
据10月16日消息,日前,苏宁易购对外宣称,利用“MOMO节”,通过对大数据进行分析,并且向近期未购买面膜的用户赠送礼券的优惠方式作为噱头,在短短5天内就成功卖出300万片面膜,成功实现精准营销。
此外,通过此次面膜的成功营销,更是为苏宁易购积累了不少用户以及数据,更进一步掌握了用户的需求,并且将来根据这些数据来制定促销活动的发布节点以及投入的产品类,加强提升用户体验,增加用户的粘性。
苏宁易购还表示,今次的MOMO节的灵感来源于今年的818前夕的“姨妈巾”的热卖,除了女性的日用品以及母婴用品之外,面膜等美妆用品也是女性的一大消费板块,并且该类用品易消耗,重复购买率高,非常适合用作爆款来进行促销。
有关业内分析人士表示,在如今的“她经济”的热潮下,苏宁易购的男女用户比例为6:4,如果撬动女性的消费者,刺激购买狂潮,正是成为了苏宁易购实现精准营销的关键。
⑵ 怎样利用大数据帮助企业进行营销管理
对企业来说,营销不能只是表面上做数据调查这么简单,还必须要有基于调查的分析,进而形成公司的参考资料,用数据说话。
可以通过大数据对用户行为与特征分析。要积累足够的用户数据,才能分析出用户的喜好与购买习惯。通过大数据支撑精准营销信息推送。现在的有大数据系统可以制定详细准确的分析,营销管理有更好的精准性。通过大数据让营销活动更能投用户所好。捕获用户心理,后续的营销活动则主要针对这些人群展开。通过大数据帮助企业筛选重点客户,有了大数据,可以知道哪些是最有价值的用户或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关;从用户在社会化媒体上所发布的各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。通过大数据分析更加清晰你的产品消费者的特点。大数据可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效
⑶ 如何进行大数据营销
可穿戴的大数据
看看可穿戴技术,会认为这是便捷的下一步发展。但对于现代的企业主来讲,这是大数据成就的一个典型的例子。从一个智能手表收集的数据可以允许企业不仅知道你的习惯和你频繁去的地方,还有哪些特性更吸引你以及不怎么使用,这些都是他们可以用来分析的数据,来提高你的总体体验,还可以大胆预测哪些趋势和品味可以引领你,这样他们就可以在一个不相关的领域提供最好的服务。企业提供自己的品牌的可穿戴产品或更简单的设计不仅在可穿戴式产品的炒作,还可以充分和创造性的利用大数据的提供信息。
不管是大方向还是小方面,年轻的企业家都正在调整大数据运行的方式,以及大数据收集和使用的方法。随着如云端服务这样的技术的出现来帮助其前进与发展,可以公正地说,大数据的使用是越来越有创造力。
⑷ 如何运用大数据思维进行营销管理
大数据时代要求公司所有的部门和运营都需要以客户为核心。企业需要一个以CRM系统为核心的数据收集系统与业务流程运作相结合。这样才可能把公司外部客户和内部员工围绕业务连接起来。
企业利用CRM基于大数据思维的营销管理方法:
基于大数据的智能化客户关系管理
基于大数据和移动互联等新技术,在更新视角、更深层次上,帮助销售人员站在客户的角度思考问题。包括客户的价值,客户的需求,客户的真正目的。销售人员可以借助大数据平台上源源不断的数据来源和数据分析结果成为客户售前顾问。向客户提供其所需要的产品详细信息,和产品功能。
基于客户生命周期的营销管理
CRM通过数据库的建立和分析,各个部门都对顾客的资料有详细全面的了解,可以给予顾客更加个性化的服务支持和营销设计。另外销售自动化功能为客户建立了强大的数据库,再通过关键词对数据库搜索,通过区分不同的营销对象来规划市场活动和推动营销层次。
部门协同合作提高效率
CRM主要包括销售自动化、营销管理、客户服务和支持、客户呼叫中心等几个模块。它的实质是充分发挥市场、销售、服务三大部门的作用,并且使三个部门能充分共享客户信息,打破各部门之间的信息堡垒的封锁,从而使各个部门以一个企业的整体形象出现在客户面前。
⑸ 有没有一个有具体数据的大数据营销案例
暂无大数抄据营销案例。袭
目前大数据还都是刚刚兴起,第一是拥有大数据的企业很少,第二是拥有大数据且具有足够的大数据挖掘分析的人才的企业更是屈指可数,第三是大数据挖掘分析的作用在银行、金融、政务、电商等平台起到的作用都非常大,绝大多数的精力都还放在如何提升效率和效益上,能用于营销的精力真的很少。
⑹ 企业管理培训:企业如何利用大数据进行市场营销
现在的营销市场是一个高速发展的市场
科技发达,信息流通量大
人们之间的网内络容互动越来越多
存在于网络上的数据也越来越多
大数据信息采集逐渐被企业应用到营销活动中
对于企业而言
利用这些大数据信息采集对行业竞争起到至关重要的作用
企业通过相关的大数据信息采集
可以降低营销成本、提高营销效率、及时调整营销方案等
以云速数据挖掘为例
通过输入行业关键字
就能够在指定区域搜索到有效的客户信息
将这些信息分类标记后
再以一键推广的方式将产品信息直接触达客户端
节省了大量寻找客户和拓展渠道的时间
大大推进了企业的营销进程
⑺ 大数据时代的营销怎么做
大数据时代的营销怎么做?
大数据时代的营销怎么做?各公司在大数据方面出手阔绰。首席营销官调查网站(The CMO Survey)报道称,目前大约有5.5%的营销预算用于营销分析,这个数字将在未来3年内增加到8.7%。大家的期望值很高,许多公司正试图弄清楚如何破译数据,从中获得卓越的战略见解。
我非常支持这种获取和利用数据来推动决策的趋势。然而,这也是问题所在。随着数据量的增长,企业的数据利用率越来越低。我首先在2012年2月提出了如下问题:“在你的公司作出决策前,对现有或者索取的营销分析数据加以利用的项目占多大比例?”得到的结果是37%,当时我觉得这个比例太低。但当我在2013年8月提出同样的问题时,比例降至29%。图1显示了这个比例在过去18个月里持续下降。
但这个调查结果并非完全出人意料。回顾30年来相关调查的历史,数据利用率始终偏低,很多种类的营销信息都是如此,包括营销调研、广告调研和现在的社交媒体调研。这种偏低的营销分析数据利用率妨碍了大数据对利润的贡献。
妨碍有多大?有些人可能会说,营销分析等各种市场情报的最终衡量标准是能否增进企业对客户的了解。首席营销官调查网站请顶级营销人员对他们公司在“获得和利用对客户的深入见解”方面的表现打分。满分为5分,1分是糟糕,2分是尚可,3分是普通,4分是良好,5分是优秀。回顾过往得分,结果显示仍然处于普通水平(2013年8月为3.4分,2012年2月为3.5分,2009年8月为3.5分)。因此,即使用于营销分析的花费增多,但我们并未看到对客户的深入见解有所提高。
企业应该怎么做?首先,管理人员必须以终为始。上市计划、创造需求的活动和销售活动必须包括关于哪些数据应该收集以及如何利用它们的具体说明。当计划和策略中植入了大数据方案的时候,偏低的利用率可能会上升。
其次,企业必须花钱培训管理人员,让他们知道如何利用营销分析来获得洞察力、推动决策、实施策略和评估他们已经采取的行动。正是出于这个原因,我们在福库商学院(Fuqua)教授“市场情报”课程,专注于信息的“使用”而非“创造”。企业必须更加重视市场分析的应用部分。机构和咨询公司可以提供这类培训。
第三,企业必须找到和留住那些能够充分利用市场分析的合适人才。当问及“你的公司在多大程度上拥有能够充分利用市场分析的合适人才?”时(1分为没有合适的人才,7分为有合适的人才),仅仅3.4%的受访者给自己的公司打了7分,56%的人打了低于平均水平的分数。图2显示了完整的分数分布情况(平均分为3.4分,标准偏差为1.7分)。
⑻ 在大数据时代,如何利用相关性做营销
另外一边,微博账号申请也需要一个邮箱地址。通常来说,同一个邮箱地址意味着航空公司里的会员和微博里的会员,应该是同一个人。公司做了一个筛选,合并出十万个用户来。 然后一家第三方公司的数据部门介入,主要任务是看这十万航空公司会员的微博用户,在社会化媒体上的行为,比如“说”些什么,比如喜欢介入什么样的话题去转发评论,比如喜欢关注什么样的商业账号。研究这类事的原因在于:这个航空公司很想知道它在社会化媒体上发起什么样的活动(以及活动所配备的礼品刺激)会吸引到这十万会员参加,成为earnedmedia。 这个案例并非严格意义上的大数据,因为数据还是不够海量。不过,它的原理和大数据营销有关:寻求相关性。 相关性不是因果,很难得出这样的结论:因为经常坐某某航空公司的班机,所以喜欢参与某某活动(反过来也不成立)。但这两个变量之间,从普遍意义上讲,存在一定的关联。这个道理就像穿红袜子和炒股票的关系,或许有一定的关联系数,但绝不是因果关系。相关搞成了因果,差不多和“迷信”就没有区别了。 但问题在于,很多人把相关等同于因果,这样的做法会形成很有些误导性的结论。比如说,当在这个十万航空公司用户中发现,他们特别喜欢某类活动,这个结论是不具有推广性质的。再新增五万航空公司微博用户时,你很难把上述那个结论也放他们头上。因为这里面没有因果关系。要确认因果关系,必须经过一个很复杂的观察和思考过程,排除所谓“隐性变量”。这不是那么简单的做一些数据分析就可以的。相关性是因果的前提,但是不等于因果。 于是,大数据出现了。 大数据寻求的是海量数据,海量到什么份上?就是全样本。全样本和抽样显然是不同的。过去的研究,由于操作性的关系,很难做到全样本,需要去抽样。抽样的科学做法是“随机”——不过这一点听着容易,做起来相当困难。真正的随机抽样需要花很多钱(利用社交网络关系,通过一个用户做问卷再发动这个用户找更多的人来做问卷,一点都不随机),而且一个无法绕过的弊端在于:如果你使用调查问卷的方法,你很难排除回答者的语言回答一定就是ta心中真正的想法或者实际上的真正行为。 大数据首先不是抽样,它获得的数据是全体样本数据,其次它不是在让用户回答问题,而是实打实地去获取用户的“行为”。用户声称对某活动会有兴趣和用户是否参加了某活动,显然后者更能说明问题。 最重要的一点,大数据分析和抽样分析的核心区别在于:前者是动态的,后者是静态的。 前文提到,随机抽样方法是成本很高的,故而它很难每天都去做一次——事实上,为某个特定的问题一个月乃至一个季度做一次随机抽样,都很难实施。于是,一个随机抽样所形成的结论,其实是静态的,它只能说明在做那次调研时的一些相关性。当有新的用户(样本)加入时,很难再说明过去的相关性是否能够成立——除非,你能找到真正的排除了各种隐形变量后的因果关系。 如果试图减少成本去做非随机抽样,那么,它的结论就更没有推广意义(学术一点称之为外部效度性,非随机抽样外部无效度)。当新用户加入后,非随机抽样的结论基本不能适用。 但大数据的分析却是动态的,每秒都有可能产生一个新的结论。让我们用最常见的亚马逊页面上的“购买此商品的顾客也同时购买”来举例。 这个部分里的商品是活动的,由于新购买的产生,会导致这个模块里的商品可能会产生变化。不过,这个模块也有可能是导致商品集中化购买的重要原因:用户看到了这个模块里推荐的商品而产生购买的可能是很大的(也许ta本来就没有任何购买的念头,甚至连这个商品都不晓得)。但对于大数据来说,原因是什么一点也不重要,它要做的——至少在电子商务领域——无非是提高客单价罢了。买了A书和买了B书之间的因果研究,那是学者们的事,不是商人关心的事。 回到航空公司的具体案子来。10万同时拥有航空公司会员和微博会员的人,并非随机抽样而得,故而这10万对于整体数百万航空公司会员而言,没有代表性。但我们的目标不是想寻求坐这家航空公司班机的人和参与某网络活动的因果关系,我们只是想提升一下参与活动概率并希望看到更多人会去转发某个活动罢了。故而,10万微博用户,够了。 在某一个时点,跑了一下数据,大致能看到一些相关性,于是我们开始设计某种活动,并有针对性地让这10万微博用户知道,这次获得的参与度和转发率,比毫无数据支撑背景下的胡乱策划,成功率应该会高一点。同样的人力投入,得到了相对而言的较高效果,这就是数据分析的好处。 过了三个月后,又有需要策划的活动,注意,这一次依然需要再跑一次数据。因为样本可能不是只有10万了,也许15万,也许运气不好有2万微博用户已经“死亡”,只剩8万。另外一个可能是有某些新的外部变量加入,比如出来一种新的商品让很多人趋之若鹜高度关注。这个时候拿上一次的数据来指导策划,又是盲人骑瞎马,夜半临深渊了。 不同的时点,或者目标不同的活动,都需要再次跑数据,这可能是大数据分析的麻烦之处。不过,计算机的长处就是计算,花上一两个小时设计几个公式或模型,相对于过去动不动要搞随机抽样,便利性提高很多倍,值得尝试。 更宏大一点的就是真正意义上的“大数据”了。今年年头互联网圈阿里要并购新浪微博,从商业逻辑上讲,一个是中国最大的消费平台,一个是中国最大的碎片化言论平台,两者数据的合并,是颇能挖出更多的相关性来。 广告圈里一句名言:我知道我的广告浪费了一半,但我不知道浪费了哪一半。一些营销业者鼓吹说他们可以让你不浪费那一半。不要相信他们。对于广告来说,从浪费50%到浪费49%,都是很值得去投入的事。建立在相关性而非因果上的大数据营销,不可能让广告主从此不再浪费广告,它只能做到:浪费得少一点。