導航:首頁 > 電商促銷 > 數據挖掘技術在電子商務中的應用

數據挖掘技術在電子商務中的應用

發布時間:2022-01-18 15:29:35

1. 誰能給我提供幾個數據挖掘在電子商務中的應用案例急!!!!!!

數據挖掘交流討論(26,與汪生討論「網路日誌分析的整體想法」)http://shzxqdj.blog.163.com/blog/static/816705772010111091055823/
數據挖掘實踐應用(76,網路路徑分析挖掘實戰,上)
http://shzxqdj.blog.163.com/blog/static/8167057720106483155869/
數據挖掘營銷應用(77,網路路徑分析挖掘實戰,下)
http://shzxqdj.blog.163.com/blog/static/816705772010614113824282/
數據挖掘實踐應用(81, 《X產品功能點價值分析報告》落地應用討論匯總)
http://shzxqdj.blog.163.com/blog/static/8167057720108111156557/

2. 求:數據挖掘技術在電子商務中有哪些應用謝謝!

購買推薦,反饋分析,客戶分析等.都在用.

3. 目前,數據挖掘技術在我們身邊的具體應用有哪些大家可以在線交流交流......

數據挖掘系統的其它應用還有:
♦ 在對客戶進行分析方面:銀行信用卡和保險行業,利用數據挖掘將市場分
成有意義的群組和部門,從而協助市場經理和業務執行人員更好地集中於
有促進作用的活動和設計新的市場運動。
♦ 在客戶關系管理方面: 數據挖掘能找出產品使用模式或協助了解客戶行為,
從而可以改進通道管理 (如銀行分支和6等) 。 又如正確時間銷售就是基於顧客生活周期模型來實施的。
♦ 在零售業方面:數據挖掘用於顧客購貨籃的分析可以協助貨架布置,促銷活動時間,促銷商品組合以及了解滯銷和暢銷商品狀況等商業活動。通過
對一種廠家商品在各連鎖店的市場共享分析,客戶統計以及歷史狀況的分
析,可以確定銷售和廣告業務的有效性。
♦ 在產品質量保證方面:數據挖掘協助管理大數量變數之間的相互作用,並
能自動發現出某些不正常的數據分布,揭示製造和裝配操作過程中變化情
況和各種因素,從而協助質量工程師很快地注意到問題發生范圍和採取改
正措施。
♦ 在遠程通訊方面:基於數據挖掘的分析協助組織策略變更以適應外部世界
的變化,確定市場變化模式以指導銷售計劃。在網路容量利用方面,數據
挖掘能提供對客戶聚集服務使用的結構和模式的了解,從而指導容量計劃
人員對網路設施作出最佳投資決策。
♦ 在各個企事業部門,數據挖掘在假偽檢測及險災評估、失誤迴避、資源分
配、市場銷售預測廣告投資等很多方面,起著很重要作用。例如在化學及
制葯行業,將數據挖掘用於巨量生物信息可以發現新的有用化學成分;在遙感領域針對每天從衛星上及其它方面來的巨額數據,對氣象預報、臭氧
層監測等能起很大作用。

4. 數據倉庫及數據挖掘技術在電子商務系統中能起到什麼作用

隨著市場競爭的越來越激烈,商業環境中的信息越來越密集,企業必須能夠深入回靈活利用積累答的大量數據挖掘潛在的規律,提高決策質量,把握和發現市場機遇,提升企業的競爭力。 實施商務智能是一個十分復雜的過程,成功的商務智能應該具備三個要素:商業需求、大量的數據和實現商務智能的技術。因此,商務智能有其特定的實施方法,它包含對企業商務智能需求的明確、對企業現有信息化情況的了解和對各種商務智能技術的充分掌握三個方面。

5. 數據挖掘在電子商務中的應用的論文提綱怎麼寫

我給你發個摘要吧
隨著4G時代的到來,電信市場的競爭越來越激烈,客戶資源成為電信企業競爭的焦點。而客戶消費行為規律是客戶知識的重要組成部分,因此基於消費行為認知的客戶細分就成為電信企業客戶關系管理的重頭戲。利用數據挖掘演算法針對某一具體的客戶消費數據集進行分析,挖掘出有趣的信息,並根據這些有趣的結論進一步調整企業的營銷策略
本文針對當前電信企業在4G客戶細分方面的不足,結合電信企業客戶的特徵通過關聯分析來實現對電信企業現有客戶的細分,幫助電信企業實現電信客戶的合理分類,從而對電信企業的營銷策略提出指導性意見。通過對某一運營商的4G客戶資料庫進行分析,採用Apriori演算法發現客戶消費行為和消費特點之間有趣的關聯規則,並根據這些信息進一步分析,為營銷決策者提供一種新的思考問題的視角。
本文的研究思路是對樣本數據進行預處理後,將樣本數據劃分為換4G卡、換4G套餐、換4G終端三大客戶群體,再分別計算出月均arpu值、月均mou值、月均dou值,最後利用Clementine軟體對三大客戶群體的這三個值進行基於MDLP原則的熵分組,得到細分的特徵客戶群。然後對這些客戶群再做進一步的研究,利用Apriori 演算法產生頻繁項集,依據頻繁項集產生簡單關聯規則,挖掘出客戶消費行為和細分變數品牌、arpu值、mou值和dou值之間的關聯關系,總結出相應的規律,幫助電信企業找到特定消費群體的消費習慣,以此為基礎,對所識別出來的消費群體進行有針對性的營銷。

6. 數據挖掘的應用領域有哪些

數據挖掘的應用領域非常廣泛,目前來說在零售業、製造業、財務金融保險、通訊及醫療服務、電信、零售、農業、電力、生物、天體、化工等方面,未來將會應用在更多的領域之中。

近年來,數據挖掘引起了信息產業界的極大關注,一般只要該產業有分析價值需求的資料庫,就可以利用數據挖掘工具進行有目的的對比分析,再將這些數據轉換成有用的信息和知識。獲取的信息和知識可以廣泛用於各種應用,包括市場分析、生產控制、醫療服務、工程設計和科學探索等。比如某商場從顧客購買商品中發現一定的關聯規則,可以提供打折、購物券等促銷手段,提高銷售額;某醫院內部醫療器具的管理、病人檔案資料整理等工作,引進數據挖掘技術,能夠深入分析疾病之間的聯系及規律,幫助醫生診斷和治療,以達到診斷事半功倍的目標,且為保障人類健康等提供強大的技術支持。諸如此類的應用,還有很多。

了解數據挖掘的應用領域,推薦上CDA數據分析師的課程。課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生具備從數據治理根源出發的思維,通過數字化工作方法來探查業務問題,通過近因分析、宏觀根因分析等手段,再選擇業務流程優化工具還是演算法工具,而非「遇到問題調演算法包」。真正理解商業思維,項目思維,能夠遇到問題解決問題。點擊預約免費試聽課。

7. web數據挖掘技術在電子商務中有哪些應用

客戶細分 ,客戶價值 ,交叉銷售,

流量指標、轉化指標、推廣指標、服務指標、用戶指標

8. 數據在電子商務中的應用有什麼作用

大數據在電子商務應用中的作用:
第一,對於利用大數據進行商品關聯進行的挖掘營銷來說,通過大數據挖掘技術,保證數據之間得到有效的關聯性,這樣在具體的企業運用過程中,應該保證有效分析原有數據的基礎上,建立起相關的數據聯系。比如,通過相關的啤酒和尿布的關聯營銷的案例,能夠給電商提供有效的解決思路,能夠有效實現電商企業產品信息的相關推薦以及結算界面的互補推薦的內容。利用小型的資料庫進行處理和分析,能夠使得用戶的短期需求得到滿足,但是,通過大數據對於商品關聯度進行關聯,則能夠有效保證界面信息的准確度大大提升,能夠更好保證用戶潛在需求得到一定激發。所以,利用大數據的分析,保證充分對於商品的關聯性進行挖掘,並能能夠保證推薦界面的有效性,這點則是電商應該注重的地方。
第二,對於利用大數據進行的社會網路營銷來說,當前,社會化媒體的高度發展,已經使得海量的人群得到覆蓋,並且社會網路營銷的傳播速度正在呈現飛速的發展,利用大數據,人們可以對於社會化網路的傳播進行充分地了解,能更好地開展電商進行類似於社會網路營銷活動的開展。對於電子商務企業來說,應該充分利用好大數據分析的優勢,能夠有效把握好社會化網路傳播媒介對於消費者的偏好的分析,在相關的社會媒介上進行分享活動的積極開展,使得傳播范圍不斷擴大,有效提高營銷效率。
第三,對於利用大數據進行的地理營銷來說,利用大數據的技術優勢,能夠充分對於網站的交易數據進行有效分析,在進行商品的地理營銷中,能夠根據地理位置區域特定區域中人們的不同喜好,因此有效地開展不同類型的營銷策略活動。對於電子商務企業來說,大部分電商則是在交易最後環節獲得用戶的收貨地址,只有部分的電商則會有效地在開始階段,就能夠獲得用戶地理位置,這樣的情況不利於進行商品的地理銷售。應該通過大數據技術,分析用戶地理位置的有效劃分,保證存在的差異性的確定,應該充分保證用戶地理信息和感興趣商品的關聯度,同時,能夠在對於產品的服務,在細節上更加完善。
第四,對於利用大數據進行用戶行為的分析營銷來說,電商主要分析消費者的歷史記錄以及涉及的購買行為,這樣就能有效獲得用戶的消費習慣,有效可以為企業提供用戶行為分析營銷。比如,用戶的心理、行為軌跡可以通過瀏覽網頁時停留在具體產品上的時間進行判斷,有利於發現潛在的用戶,進行具有針對性的商品廣告的投放,使得廣告轉化率大大增加,另外,電子商務企業來可以通過一定相關的搜索行為,針對潛在用戶的需求進行分析,使得商品種類進一步完善化。
第五,對於利用大數據實現的個性化推薦營銷來說,在實際市場分析過程中,滿足消費者的個性化要求顯得越來越重要,這就要求電子商務企業也能更好滿足個性化的營銷水平。根據大數據環境的發展特點,電子商務企業應該根據用戶的個性化要求來進行商品的推薦活動,以及產品分類等,能夠積極邀請用戶對於感興趣商品進行關注,之後還能夠繼續進行個性化信息的添加和推薦,保證用戶對於喜歡的類別進行有效修改,使得資料庫內容進行有效更新。

9. 哪個電子商務網站應用了數據挖掘技術

電子商務網站一般都會應用一些數據挖掘技術進行推薦,比如關聯分析,協同過濾等等。像卓越是應用的最好的,你登錄你的帳戶後,就會基於你的瀏覽行為、基於你的購物籃、基於你的成交記錄、基於用戶相似度分別進行推薦;當你查看某一個具體的物品時,會推薦一個另外的物品進行捆綁銷售。這裡面用的都是數據挖掘技術,只是方法略有不同,大體上會用到關聯分析、協同過濾、基於內容的、基於情景的、KNN等演算法中的一種或者多種。

10. 數據挖掘技術在電子商務中的作用,英文摘要

A wide range of e-business applications enable companies generated a lot of business data, according to corporate business objectives set for these data, data mining can help companies analyze the key factors needed to complete tasks. The article outlines the definition of data mining, methods, processes, discusses the data mining technology and e-commerce relationship between the proposed data mining technology in the application of e-commerce system architecture, has been tested to achieve a predetermined result

閱讀全文

與數據挖掘技術在電子商務中的應用相關的資料

熱點內容
電子商務物流論文提綱 瀏覽:811
電信櫃員培訓方案 瀏覽:684
葯店促銷活動總結範本 瀏覽:503
保定的電子商務有限公司 瀏覽:400
上海招贏電子商務 瀏覽:535
開業策劃活動方案ppt模板 瀏覽:425
電子商務購物車引言 瀏覽:922
軟體信息系統培訓方案 瀏覽:157
西安恆昌電子商務 瀏覽:604
商場關於年貨的策劃方案 瀏覽:116
市場營銷品牌元素 瀏覽:938
動漫周邊市場營銷策略 瀏覽:177
專項培訓會方案模版 瀏覽:13
專科護士培訓方案和培訓計劃 瀏覽:631
創意農場策劃方案 瀏覽:495
市場營銷代理協議 瀏覽:513
在線教育需求策劃方案 瀏覽:972
索尼電子商務案例分析 瀏覽:369
關檢培訓計劃方案 瀏覽:866
計算機微課培訓方案 瀏覽:90