❶ 個性化推薦演算法——協同過濾
電子商務推薦系統的一種主要演算法。
協同過濾推薦(Collaborative Filtering recommendation)是在信息過濾和信息系統中正迅速成為一項很受歡迎的技術。與傳統的基於內容過濾直接分析內容進行推薦不同,協同過濾分析用戶興趣,在用戶群中找到指定用戶的相似(興趣)用戶,綜合這些相似用戶對某一信息的評價,形成系統對該指定用戶對此信息的喜好程度預測。
與傳統文本過濾相比,協同過濾有下列優點:
(1)能夠過濾難以進行機器自動基於內容分析的信息。如藝術品、音樂;
(2)能夠基於一些復雜的,難以表達的概念(信息質量、品位)進行過濾;
(3)推薦的新穎性。
正因為如此,協同過濾在商業應用上也取得了不錯的成績。Amazon,CDNow,MovieFinder,都採用了協同過濾的技術來提高服務質量。
缺點是:
(1)用戶對商品的評價非常稀疏,這樣基於用戶的評價所得到的用戶間的相似性可能不準確(即稀疏性問題);
(2)隨著用戶和商品的增多,系統的性能會越來越低;
(3)如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦(即最初評價問題)。
因此,現在的電子商務推薦系統都採用了幾種技術相結合的推薦技術。
案例: AMAZON 個性化推薦系統先驅 (基於協同過濾)
AMAZON是一個虛擬的網上書店,它沒有自己的店面,而是在網上進行在線銷售. 它提供了高質量的綜合節目資料庫和檢索系統,用戶可以在網上查詢有關圖書的信息.如果用戶需要購買的化,可以把選擇的書放在虛擬購書籃中,最後查看購書籃中的商品,選擇合適的服務方式並且提交訂單,這樣讀者所選購的書在幾天後就可以送到家.
AMAZON書店還提供先進的個性化推薦功能,能為不同興趣偏好的用戶自動推薦符合其興趣需要的書籍. AMAZON使用推薦軟體對讀者曾經購買過的書以及該讀者對其他書的評價進行分析後,將向讀者推薦他可能喜歡的新書,只要滑鼠點一下,就可以買到該書了;AMAZON能對顧客購買過的東西進行自動分析,然後因人而異的提出合適的建議. 讀者的信息將被再次保存.這樣顧客下次來時就能更容易的買到想要的書. 此外,完善的售後服務也是AMAZON的優勢,讀者可以在拿到書籍的30天內,將完好無損的書和音樂光碟退回AMAZON, AMAZON將原價退款. 當然AMAZON的成功還不止於此, 如果一位顧客在AMAZON購買一本書,下次他再次訪問時,映入眼簾的首先是這位顧客的名字和歡迎的字樣.
❷ 電子商務推薦系統現在有什麼問題
電子商務推薦系統定義為:利用電子商務網站向用戶提供商品信息和建議,幫助客戶決定應該購買什麼產品,模擬銷售人員幫助客戶完成購買過程。它是一個基於客戶網上購物的以商品為推薦對象的個性化推薦系統,為客戶推薦符合其興趣愛好的商品。分析客戶的消費偏向,向每個客戶具有針對性地推薦的產品,幫助客戶從龐大的商品目錄中挑選真正適合自己需要的商品。電子商務推薦系統在幫助了客戶的同時也提高了客戶對商務活動的滿意度,從而換來對電子商務站點的進一步支持。
電子商務推薦系統主要起到了三個方面的作用:首先,極大地增加了客戶,可以把網站的瀏覽者轉變為購買者,提高主動性;其次,可以提高網站相關系列產品的連帶銷售能力;最後,可以提高、維持客戶對網站的滿意度和信任度。
電子商務推薦系統具有良好的發展和應用前景。在日趨激烈的競爭環境下,電子商務推薦系統能有效保留客戶,提高電子商務網站系統能大大提高企業的銷售額。成功的電子商務推薦系統將會產生巨大的經濟效益和社會效應。
電子商務推薦技術
目前,電子商務推薦系統中使用的主要推薦技術有基於內容推薦,協同過濾推薦,基於知識推薦,基於效用推薦,基於關聯規則推薦,混合推薦等等。
1.基於內容的推薦。它是信息過濾技術的延續與發展,項目或對象通過相關特徵的屬性來定義,系統基於商品信息, 包括商品的屬性及商品之間的相關性和客戶的喜好來向其推薦。基於商品屬性主要是基於產品的屬性特徵模型推薦。
內容推薦技術分析商品的屬性及其相關性可以離線進行,因而推薦響應時間快。缺點是難以區分商品信息的品質和風格,而且不能為用戶發現新的感興趣的商品,只能發現和用戶已有興趣相似的商品。
2.協同過濾推薦。協同過濾推薦是目前研究最多、應用最廣的電子商務推薦技術。它基於鄰居客戶的資料得到目標客戶的推薦,推薦的個性化程度高。利用客戶的訪問信息,通過客戶群的相似性進行內容推薦,不依賴於內容僅依賴於用戶之間的相互推薦,避免了內容過濾的不足,保證信息推薦的質量。協同過濾推薦優點有:能為用戶發現新的感興趣的商品;不需要考慮商品的特徵,任何形式的商品都可以推薦。缺點是:稀疏性問題,用戶對商品的評價矩陣非常稀疏;可擴展性問題,隨著系統用戶和商品的增多,系統的性能會越來越低;冷啟動問題,如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦。
3.基於知識的推薦。在某種程度上可以看成是一種推理技術,各個方法因所用的知識不同而有明顯區別。基於知識的推薦提出了功能知識的概念。簡單的說,功能知識是關於某個項目如何滿足某個特定客戶的知識,它能解釋需要和推薦之間的關系。在基於知識的推薦看來,客戶資料可以是任何能支持推理的知識結構,並非一定是用戶的需要和偏好。
4.基於效用的推薦。它是根據對客戶使用項目的效用進行計算的,核心問題是如何為每個客戶創建效用函數,並考慮非產品屬性,如提供商的可靠性和產品的可用性等。它的優點是能在效用函數中考慮非產品因素。效用函數通過交互讓用戶指定影響因素及其權重對於大多數用戶而言是極其繁瑣的事情,因而限制了該技術的應用。
5.基於關聯規則的推薦系統往往利用實際交易數據作為數據源,它符合數據源的通用性要求。以關聯規則為基礎,把已購商品作為規則頭,推薦對象作為規則體,其中關聯規則的發現最關鍵且最耗時,但可以離線進行。其特點是實現起來比較簡潔,推薦效果良好,並能動態地把客戶興趣變化反映到推薦結果中。
6.混合推薦技術。混合推薦系統整合兩種或更多推薦技術以取得更好的實際效果。最常見的做法是將協同過濾推薦技術與其它某一種推薦技術相結合。例如,結合基於協同過濾和基於內容推薦這兩種推薦技術,盡量利用它們的優點而避免其缺點,提高推薦系統的性能和推薦質量。比如,為了克服協同過濾的稀疏性問題,可以利用用戶瀏覽過的商品預期用戶對其他商品的評價,這樣可以增加商品評價的密度,利用這些評價再進行協同過濾,從而提高協同過濾的性能。
電子商務推薦系統,一方面有助於電子商務網站內容和結構自適應性的實現,另一方面在幫助客戶快速定位感興趣的商品的同時也為企業實現了增值。電子商務推薦系統作為有利的分析工具和促銷手段,已成為電子商務網站的競爭工具,必將獲得廣泛的應用和發展。本文對電子商務推薦系統進行了介紹,並對推薦技術進行了概述。目前國內的電子商務網站在這方面的實踐處在快速發展的階段,因此還需要繼續研究出更智能、更優化的電子商務推薦技術。
❸ 三種常用的電子商務推薦演算法
三種常用的電子商務推薦演算法是:基於內容的推薦(Content-Based Recommendation)、協同過濾推薦(Collaborative Filtering Recommendation)以及混合推薦(Hybrid Recommendation)。
基於內容的推薦:
這種推薦方法主要是通過分析用戶以前的行為和興趣,推薦與其興趣相似的產品或服務。例如,如果一個用戶在過去的行為中顯示出對科幻電影的興趣,那麼基於內容的推薦系統就會推薦更多的科幻電影。這種推薦方法的優點是可以為用戶提供與其興趣高度匹配的產品,缺點是它無法發現用戶的新興趣,因為它只推薦與用戶過去行為相似的產品。
協同過濾推薦:
協同過濾推薦是另一種常見的電子商務推薦演算法,它通過尋找具有相似興趣的用戶群體,然後將這些用戶群體喜歡的產品推薦給新用戶。例如,如果一個用戶喜歡看《流浪地球》,那麼協同過濾可能會推薦其他喜歡《流浪地球》的用戶喜歡的其他電影。這種方法的優點是可以幫助用戶發現新的興趣點,缺點是可能會出現冷啟動問題,即對於沒有任何行為的新用戶或新產品,系統無法進行有效的推薦。
混合推薦:
混合推薦演算法是結合基於內容的推薦和協同過濾推薦的一種方法。它同時考慮了用戶的歷史行為和興趣,以及相似用戶的行為和興趣,以生成更全面、更准確的推薦。例如,一個混合推薦系統可能會首先使用基於內容的推薦來確定用戶對科幻電影的興趣,然後使用協同過濾來推薦其他喜歡科幻電影的用戶喜歡的其他類型的電影。這種方法的優點是可以克服基於內容的推薦和協同過濾推薦的局限性,提供更准確、更個性化的推薦,缺點是可能需要更復雜的演算法和更多的計算資源。