① 神经网络BP模型
一、BP模型概述
误差逆传播(Error Back-Propagation)神经网络模型简称为BP(Back-Propagation)网络模型。
Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。
BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。
BP网络主要应用于以下几个方面:
1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;
2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;
3)分类:把输入模式以所定义的合适方式进行分类;
4)数据压缩:减少输出矢量的维数以便于传输或存储。
在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。
二、BP模型原理
下面以三层BP网络为例,说明学习和应用的原理。
1.数据定义
P对学习模式(xp,dp),p=1,2,…,P;
输入模式矩阵X[N][P]=(x1,x2,…,xP);
目标模式矩阵d[M][P]=(d1,d2,…,dP)。
三层BP网络结构
输入层神经元节点数S0=N,i=1,2,…,S0;
隐含层神经元节点数S1,j=1,2,…,S1;
神经元激活函数f1[S1];
权值矩阵W1[S1][S0];
偏差向量b1[S1]。
输出层神经元节点数S2=M,k=1,2,…,S2;
神经元激活函数f2[S2];
权值矩阵W2[S2][S1];
偏差向量b2[S2]。
学习参数
目标误差ϵ;
初始权更新值Δ0;
最大权更新值Δmax;
权更新值增大倍数η+;
权更新值减小倍数η-。
2.误差函数定义
对第p个输入模式的误差的计算公式为
中国矿产资源评价新技术与评价新模型
y2kp为BP网的计算输出。
3.BP网络学习公式推导
BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。
各层输出计算公式
输入层
y0i=xi,i=1,2,…,S0;
隐含层
中国矿产资源评价新技术与评价新模型
y1j=f1(z1j),
j=1,2,…,S1;
输出层
中国矿产资源评价新技术与评价新模型
y2k=f2(z2k),
k=1,2,…,S2。
输出节点的误差公式
中国矿产资源评价新技术与评价新模型
对输出层节点的梯度公式推导
中国矿产资源评价新技术与评价新模型
E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。
其中
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
设输出层节点误差为
δ2k=(dk-y2k)·f2′(z2k),
则
中国矿产资源评价新技术与评价新模型
同理可得
中国矿产资源评价新技术与评价新模型
对隐含层节点的梯度公式推导
中国矿产资源评价新技术与评价新模型
E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
设隐含层节点误差为
中国矿产资源评价新技术与评价新模型
则
中国矿产资源评价新技术与评价新模型
同理可得
中国矿产资源评价新技术与评价新模型
4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb
1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。
权改变的大小仅仅由权专门的“更新值”
中国矿产资源评价新技术与评价新模型
其中
权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。
中国矿产资源评价新技术与评价新模型
RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的
各自的更新值
于在误差函数E上的局部梯度信息,按照以下的学习规则更新
中国矿产资源评价新技术与评价新模型
其中0<η-<1<η+。
在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值
为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值
η+=1.2,
η-=0.5,
这两个值在大量的实践中得到了很好的效果。
RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax
当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。
为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为
Δmax=50.0。
在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如
Δmax=1.0。
我们可能达到误差减小的平滑性能。
5.计算修正权值W、偏差b
第t次学习,权值W、偏差b的的修正公式
W(t)=W(t-1)+ΔW(t),
b(t)=b(t-1)+Δb(t),
其中,t为学习次数。
6.BP网络学习成功结束条件每次学习累积误差平方和
中国矿产资源评价新技术与评价新模型
每次学习平均误差
中国矿产资源评价新技术与评价新模型
当平均误差MSE<ε,BP网络学习成功结束。
7.BP网络应用预测
在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。
8.神经元激活函数f
线性函数
f(x)=x,
f′(x)=1,
f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。
一般用于输出层,可使网络输出任何值。
S型函数S(x)
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围(0,1)。
f′(x)=f(x)[1-f(x)],
f′(x)的输入范围(-∞,+∞),输出范围(0,
一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。
在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。
双曲正切S型函数
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围(-1,1)。
f′(x)=1-f(x)·f(x),
f′(x)的输入范围(-∞,+∞),输出范围(0,1]。
一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。
阶梯函数
类型1
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围{0,1}。
f′(x)=0。
类型2
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围{-1,1}。
f′(x)=0。
斜坡函数
类型1
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围[0,1]。
中国矿产资源评价新技术与评价新模型
f′(x)的输入范围(-∞,+∞),输出范围{0,1}。
类型2
中国矿产资源评价新技术与评价新模型
f(x)的输入范围(-∞,+∞),输出范围[-1,1]。
中国矿产资源评价新技术与评价新模型
f′(x)的输入范围(-∞,+∞),输出范围{0,1}。
三、总体算法
1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法
(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];
(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];
(3)隐含层的权值W1,偏差b1初始化。
情形1:隐含层激活函数f( )都是双曲正切S型函数
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9))输出W1[S1][S0],b1[S1]。
情形2:隐含层激活函数f( )都是S型函数
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9)输出W1[S1][S0],b1[S1]。
情形3:隐含层激活函数f( )为其他函数的情形
1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];
2)计算输入模式X的每个变量的范围均值向量Xmid[N];
3)计算W,b的幅度因子Wmag;
4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];
5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];
6)计算W[S1][S0],b[S1];
7)计算隐含层的初始化权值W1[S1][S0];
8)计算隐含层的初始化偏差b1[S1];
9)输出W1[S1][S0],b1[S1]。
(4)输出层的权值W2,偏差b2初始化
1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];
2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];
3)输出W2[S2][S1],b2[S2]。
2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法
函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)
(1)输入参数
P对模式(xp,dp),p=1,2,…,P;
三层BP网络结构;
学习参数。
(2)学习初始化
1)
2)各层W,b的梯度值
(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE
(4)进入学习循环
epoch=1
(5)判断每次学习误差是否达到目标误差要求
如果MSE<ϵ,
则,跳出epoch循环,
转到(12)。
(6)保存第epoch-1次学习产生的各层W,b的梯度值
(7)求第epoch次学习各层W,b的梯度值
1)求各层误差反向传播值δ;
2)求第p次各层W,b的梯度值
3)求p=1,2,…,P次模式产生的W,b的梯度值
(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值
(9)求各层W,b的更新
1)求权更新值Δij更新;
2)求W,b的权更新值
3)求第epoch次学习修正后的各层W,b。
(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE
(11)epoch=epoch+1,
如果epoch≤MAX_EPOCH,转到(5);
否则,转到(12)。
(12)输出处理
1)如果MSE<ε,
则学习达到目标误差要求,输出W1,b1,W2,b2。
2)如果MSE≥ε,
则学习没有达到目标误差要求,再次学习。
(13)结束
3.三层BP网络(含输入层,隐含层,输出层)预测总体算法
首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。
函数:Simu3lBP( )。
1)输入参数:
P个需预测的输入数据向量xp,p=1,2,…,P;
三层BP网络结构;
学习得到的各层权值W、偏差b。
2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。
四、总体算法流程图
BP网络总体算法流程图见附图2。
五、数据流图
BP网数据流图见附图1。
六、实例
实例一 全国铜矿化探异常数据BP 模型分类
1.全国铜矿化探异常数据准备
在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。
2.模型数据准备
根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。
3.测试数据准备
全国化探数据作为测试数据集。
4.BP网络结构
隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。
表8-1 模型数据表
续表
5.计算结果图
如图8-2、图8-3。
图8-2
图8-3 全国铜矿矿床类型BP模型分类示意图
实例二 全国金矿矿石量品位数据BP 模型分类
1.模型数据准备
根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。
2.测试数据准备
模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。
3.BP网络结构
输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。
表8-2 模型数据
4.计算结果
结果见表8-3、8-4。
表8-3 训练学习结果
表8-4 预测结果(部分)
续表
② 什么叫神经网络模型
神经网络的基础在于神经元。
神经元是以生物神经系统的神经细胞为基础的生物模型。在人们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元数学化,从而产生了神经元数学模型。
大量的形式相同的神经元连结在—起就组成了神经网络。神经网络是一个高度非线性动力学系统。虽然,每个神经元的结构和功能都不复杂,但是神经网络的动态行为则是十分复杂的;因此,用神经网络可以表达实际物理世界的各种现象。
神经网络模型是以神经元的数学模型为基础来描述的。神经网络模型由网络拓扑.节点特点和学习规则来表示。神经网络对人们的巨大吸引力主要在下列几点:
1.并行分布处理。
2.高度鲁棒性和容错能力。
3.分布存储及学习能力。
4.能充分逼近复杂的非线性关系。
在控制领域的研究课题中,不确定性系统的控制问题长期以来都是控制理论研究的中心主题之一,但是这个问题一直没有得到有效的解决。利用神经网络的学习能力,使它在对不确定性系统的控制过程中自动学习系统的特性,从而自动适应系统随时间的特性变异,以求达到对系统的最优控制;显然这是一种十分振奋人心的意向和方法。
人工神经网络的模型现在有数十种之多,应用较多的典型的神经网络模型包括BP网络、Hopfield网络、ART网络和Kohonen网络。
参考:http://ke..com/view/3406239.html?wtp=tt
③ 时间序列模型和神经网络模型有何区别
时间序列模型是指采用某种算法(可以是神经网络、ARMA等)模拟历史数据,找出其中的变化规律,
神经网络模型是一种算法,可以用于分类、聚类、预测等等不用领域;
两者一个是问题模型,一个是算法模型
④ 如下图的神经网络模型图是通过什么软件画的
可以用viznet
⑤ 神经网络Hopfield模型
一、Hopfield模型概述
1982年,美国加州工学院J.Hopfield发表一篇对人工神经网络研究颇有影响的论文。他提出了一种具有相互连接的反馈型人工神经网络模型——Hopfield人工神经网络。
Hopfield人工神经网络是一种反馈网络(Recurrent Network),又称自联想记忆网络。其目的是为了设计一个网络,存储一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到所存储的某个平衡点上。
Hopfield网络是单层对称全反馈网络,根据其激活函数的选取不同,可分为离散型Hopfield网络(Discrete Hopfield Neural Network,简称 DHNN)和连续型 Hopfield 网络(Continue Hopfield Neural Network,简称CHNN)。离散型Hopfield网络的激活函数为二值型阶跃函数,主要用于联想记忆、模式分类、模式识别。这个软件为离散型Hopfield网络的设计、应用。
二、Hopfield模型原理
离散型Hopfield网络的设计目的是使任意输入矢量经过网络循环最终收敛到网络所记忆的某个样本上。
正交化的权值设计
这一方法的基本思想和出发点是为了满足下面4个要求:
1)保证系统在异步工作时的稳定性,即它的权值是对称的,满足
wij=wji,i,j=1,2…,N;
2)保证所有要求记忆的稳定平衡点都能收敛到自己;
3)使伪稳定点的数目尽可能地少;
4)使稳定点的吸引力尽可能地大。
正交化权值的计算公式推导如下:
1)已知有P个需要存储的稳定平衡点x1,x2…,xP-1,xP,xp∈RN,计算N×(P-1)阶矩阵A∈RN×(P-1):
A=(x1-xPx2-xP…xP-1-xP)T。
2)对A做奇异值分解
A=USVT,
U=(u1u2…uN),
V=(υ1υ2…υP-1),
中国矿产资源评价新技术与评价新模型
Σ=diαg(λ1,λ2,…,λK),O为零矩阵。
K维空间为N维空间的子空间,它由K个独立的基组成:
K=rαnk(A),
设{u1u2…uK}为A的正交基,而{uK+1uK+2…uN}为N维空间的补充正交基。下面利用U矩阵来设计权值。
3)构造
中国矿产资源评价新技术与评价新模型
总的连接权矩阵为:
Wt=Wp-T·Wm,
其中,T为大于-1的参数,缺省值为10。
Wp和Wm均满足对称条件,即
(wp)ij=(wp)ji,
(wm)ij=(wm)ji,
因而Wt中分量也满足对称条件。这就保证了系统在异步时能够收敛并且不会出现极限环。
4)网络的偏差构造为
bt=xP-Wt·xP。
下面推导记忆样本能够收敛到自己的有效性。
(1)对于输入样本中的任意目标矢量xp,p=1,2,…,P,因为(xp-xP)是A中的一个矢量,它属于A的秩所定义的K个基空间的矢量,所以必存在系数α1,α2,…,αK,使
xp-xP=α1u1+α2u2+…+αKuK,
即
xp=α1u1+α2u2+…+αKuK+xP,
对于U中任意一个ui,有
中国矿产资源评价新技术与评价新模型
由正交性质可知,上式中
当i=j,
当i≠j,
对于输入模式xi,其网络输出为
yi=sgn(Wtxi+bt)
=sgn(Wpxi-T·Wmxi+xP-WpxP+T·WmxP)
=sgn[Wp(xi-xP)-T·Wm(xi-xP)+xP]
=sgn[(Wp-T·Wm)(xi-xP)+xP]
=sgn[Wt(xi-xP)+xP]
=sgn[(xi-xP)+xP]
=xi。
(2)对于输入模式xP,其网络输出为
yP=sgn(WtxP+bt)
=sgn(WtxP+xP-WtxP)
=sgn(xP)
=xP。
(3)如果输入一个不是记忆样本的x,网络输出为
y=sgn(Wtx+bt)
=sgn[(Wp-T·Wm)(x-xP)+xP]
=sgn[Wt(x-xP)+xP]。
因为x不是已学习过的记忆样本,x-xP不是A中的矢量,则必然有
Wt(x-xP)≠x-xP,
并且再设计过程中可以通过调节Wt=Wp-T·Wm中的参数T的大小来控制(x-xP)与xP的符号,以保证输入矢量x与记忆样本之间存在足够的大小余额,从而使sgn(Wtx+bt)≠x,使x不能收敛到自身。
用输入模式给出一组目标平衡点,函数HopfieldDesign( )可以设计出 Hopfield 网络的权值和偏差,保证网络对给定的目标矢量能收敛到稳定的平衡点。
设计好网络后,可以应用函数HopfieldSimu( ),对输入矢量进行分类,这些输入矢量将趋近目标平衡点,最终找到他们的目标矢量,作为对输入矢量进行分类。
三、总体算法
1.Hopfield网络权值W[N][N]、偏差b[N]设计总体算法
应用正交化权值设计方法,设计Hopfield网络;
根据给定的目标矢量设计产生权值W[N][N],偏差b[N];
使Hopfield网络的稳定输出矢量与给定的目标矢量一致。
1)输入P个输入模式X=(x[1],x[2],…,x[P-1],x[P])
输入参数,包括T、h;
2)由X[N][P]构造A[N][P-1]=(x[1]-x[P],x[2]-x[P],…,x[P-1]-x[P]);
3)对A[N][P-1]作奇异值分解A=USVT;
4)求A[N][P-1]的秩rank;
5)由U=(u[1],u[2],…,u[K])构造Wp[N][N];
6)由U=(u[K+1],…,u[N])构造Wm[N][N];
7)构造Wt[N][N]=Wp[N][N]-T*Wm[N][N];
8)构造bt[N]=X[N][P]-Wt[N][N]*X[N][P];
9)构造W[N][N](9~13),
构造W1[N][N]=h*Wt[N][N];
10)求W1[N][N]的特征值矩阵Val[N][N](对角线元素为特征值,其余为0),特征向量矩阵Vec[N][N];
11)求Eval[N][N]=diag{exp[diag(Val)]}[N][N];
12)求Vec[N][N]的逆Invec[N][N];
13)构造W[N][N]=Vec[N][N]*Eval[N][N]*Invec[N][N];
14)构造b[N],(14~15),
C1=exp(h)-1,
C2=-(exp(-T*h)-1)/T;
15)构造
中国矿产资源评价新技术与评价新模型
Uˊ——U的转置;
16)输出W[N][N],b[N];
17)结束。
2.Hopfield网络预测应用总体算法
Hopfield网络由一层N个斜坡函数神经元组成。
应用正交化权值设计方法,设计Hopfield网络。
根据给定的目标矢量设计产生权值W[N][N],偏差b[N]。
初始输出为X[N][P],
计算X[N][P]=f(W[N][N]*X[N][P]+b[N]),
进行T次迭代,
返回最终输出X[N][P],可以看作初始输出的分类。
3.斜坡函数
中国矿产资源评价新技术与评价新模型
输出范围[-1,1]。
四、数据流图
Hopfield网数据流图见附图3。
五、调用函数说明
1.一般实矩阵奇异值分解
(1)功能
用豪斯荷尔德(Householder)变换及变形QR算法对一般实矩阵进行奇异值分解。
(2)方法说明
设A为m×n的实矩阵,则存在一个m×m的列正交矩阵U和n×n的列正交矩阵V,使
中国矿产资源评价新技术与评价新模型
成立。其中
Σ=diag(σ0,σ1,…σp)p⩽min(m,n)-1,
且σ0≥σ1≥…≥σp>0,
上式称为实矩阵A的奇异值分解式,σi(i=0,1,…,p)称为A的奇异值。
奇异值分解分两大步:
第一步:用豪斯荷尔德变换将A约化为双对角线矩阵。即
中国矿产资源评价新技术与评价新模型
其中
中国矿产资源评价新技术与评价新模型
j具有如下形式:
中国矿产资源评价新技术与评价新模型
其中ρ为一个比例因子,以避免计算过程中的溢出现象与误差的累积,Vj是一个列向量。即
Vj=(υ0,υ1,…,υn-1),
则
中国矿产资源评价新技术与评价新模型
其中
中国矿产资源评价新技术与评价新模型
第二步:用变形的QR算法进行迭代,计算所有的奇异值。即:用一系列的平面旋转变换对双对角线矩阵B逐步变换成对角矩阵。
在每一次的迭代中,用变换
中国矿产资源评价新技术与评价新模型
其中变换
在每次迭代时,经过初始化变换V01后,将在第0列的主对角线下方出现一个非0元素。在变换V01中,选择位移植u的计算公式如下:
中国矿产资源评价新技术与评价新模型
最后还需要对奇异值按非递增次序进行排列。
在上述变换过程中,若对于某个次对角线元素ej满足
|ej|⩽ε(|sj+1|+|sj|)
则可以认为ej为0。
若对角线元素sj满足
|sj|⩽ε(|ej-1|+|ej|)
则可以认为sj为0(即为0奇异值)。其中ε为给定的精度要求。
(3)调用说明
int bmuav(double*a,int m,int n,double*u,double*v,double eps,int ka),
本函数返回一个整型标志值,若返回的标志值小于0,则表示出现了迭代60次还未求得某个奇异值的情况。此时,矩阵的分解式为UAVT;若返回的标志值大于0,则表示正常返回。
形参说明:
a——指向双精度实型数组的指针,体积为m×n。存放m×n的实矩阵A;返回时,其对角线给出奇异值(以非递增次序排列),其余元素为0;
m——整型变量,实矩阵A的行数;
n——整型变量,实矩阵A的列数;
u——指向双精度实型数组的指针,体积为m×m。返回时存放左奇异向量U;
υ——指向双精度实型数组的指针,体积为n×n。返回时存放右奇异向量VT;
esp——双精度实型变量,给定的精度要求;
ka——整型变量,其值为max(m,n)+1。
2.求实对称矩阵特征值和特征向量的雅可比过关法
(1)功能
用雅可比(Jacobi)方法求实对称矩阵的全部特征值与相应的特征向量。
(2)方法说明
雅可比方法的基本思想如下。
设n阶矩阵A为对称矩阵。在n阶对称矩阵A的非对角线元素中选取一个绝对值最大的元素,设为apq。利用平面旋转变换矩阵R0(p,q,θ)对A进行正交相似变换:
A1=R0(p,q,θ)TA,
其中R0(p,q,θ)的元素为
rpp=cosθ,rqq=cosθ,rpq=sinθ,
rqp=sinθ,rij=0,i,j≠p,q。
如果按下式确定角度θ,
中国矿产资源评价新技术与评价新模型
则对称矩阵A经上述变换后,其非对角线元素的平方和将减少
综上所述,用雅可比方法求n阶对称矩阵A的特征值及相应特征向量的步骤如下:
1)令S=In(In为单位矩阵);
2)在A中选取非对角线元素中绝对值最大者,设为apq;
3)若|apq|<ε,则迭代过程结束。此时对角线元素aii(i=0,1,…,n-1)即为特征值λi,矩阵S的第i列为与λi相应的特征向量。否则,继续下一步;
4)计算平面旋转矩阵的元素及其变换后的矩阵A1的元素。其计算公式如下
中国矿产资源评价新技术与评价新模型
5)S=S·R(p,q,θ),转(2)。
在选取非对角线上的绝对值最大的元素时用如下方法:
首先计算实对称矩阵A的非对角线元素的平方和的平方根
中国矿产资源评价新技术与评价新模型
然后设置关口υ1=υ0/n,在非对角线元素中按行扫描选取第一个绝对值大于或等于υ1的元素αpq进行平面旋转变换,直到所有非对角线元素的绝对值均小于υ1为止。再设关口υ2=υ1/n,重复这个过程。以此类推,这个过程一直作用到对于某个υk<ε为止。
(3)调用说明
void cjcbj(double*a,int n,double*v,double eps)。
形参说明:
a——指向双精度实型数组的指针,体积为n×n,存放n阶实对称矩阵A;返回时,其对角线存放n个特征值;
n——整型变量,实矩阵A的阶数;
υ——指向双精度实型数组的指针,体积为n×n,返回特征向量,其中第i列为与λi(即返回的αii,i=0,1,……,n-1)对应的特征向量;
esp——双精度实型变量。给定的精度要求。
3.矩阵求逆
(1)功能
用全选主元高斯-约当(Gauss-Jordan)消去法求n阶实矩阵A的逆矩阵。
(2)方法说明
高斯-约当法(全选主元)求逆的步骤如下:
首先,对于k从0到n-1做如下几步:
1)从第k行、第k列开始的右下角子阵中选取绝对值最大的元素,并记住此元素所在的行号和列号,再通过行交换和列交换将它交换到主元素位置上,这一步称为全选主元;
2)
3)
4)αij-
5)-
最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复原则如下:在全选主元过程中,先交换的行、列后进行恢复;原来的行(列)交换用列(行)交换来恢复。
图8-4 东昆仑—柴北缘地区基于HOPFIELD模型的铜矿分类结果图
(3)调用说明
int brinv(double*a,int n)。
本函数返回一个整型标志位。若返回的标志位为0,则表示矩阵A奇异,还输出信息“err**not inv”;若返回的标志位不为0,则表示正常返回。
形参说明:
a——指向双精度实型数组的指针,体积为n×n。存放原矩阵A;返回时,存放其逆矩阵A-1;
n——整型变量,矩阵的阶数。
六、实例
实例:柴北缘—东昆仑地区铜矿分类预测。
选取8种因素,分别是重砂异常存在标志、水化异常存在标志、化探异常峰值、地质图熵值、Ms存在标志、Gs存在标志、Shdadlie到区的距离、构造线线密度。
构置原始变量,并根据原始数据构造预测模型。
HOPFIELD模型参数设置:训练模式维数8,预测样本个数774,参数个数8,迭代次数330。
结果分44类(图8-4,表8-5)。
表8-5 原始数据表及分类结果(部分)
续表
⑥ 神经网络模型的数学模型
从神经元的特性和功能可以知道,神经元是一个多输入单输出的信息处理单元,而且,它对信息的处理是非线性的。根据神经元的特性和功能,可以把神经元抽象为一个简单的数学模型。工程上用的人工神经元模型如图1-4所示。
图1-4 神经元的数学模型
在图1-4中,X1,X2,……,Xn是神经元的输入,即是来自前级n个神经元的轴突的信息A,Σ是i神经元的阈值;Wi1,Wi2……,Win分别是i神经元对X1,X2,……,Xn的权系数,也即突触的传递效率;Yi是i神经元的输出;f[·]是激发函数,它决定i神经元受到输人X1,X2,……,Xn的共同刺激达到阀值时以何种方式输出。
从图1-4的神经元模型,可以得到神经元的数学模型表达式:
(1-1)
图1-5.典型激发函数
对于激发函数f[·]有多种形式,其中最常见的有阶跃型、线性型和S型三种形式,这三种形式如图1—5所示。
为了表达方便;令:
(1-2)
则式(1-1)可写成下式:
Yi=F[Ui] ; (1-3)
显然,对于阶跃型激发涵数有:
(1-4)
对于线性型激发函数,有:
f(Ui)=Ku; (1-5)
对于S型激发函数,有:
(1-6)
对于阶跃型激发函数,它的输出是电位脉冲,故而这种激发函数的神经元称离散输出模型。
对于线性激发函数,它的输出是随输入的激发总量成正比的;故这种神经元称线性连续型模型。
对于用s型激发函数,它的输出是非线性的;故这种神经元称非线性连续型模型。
上面所叙述的是最广泛应用而且人们最熟悉的神经元数学模型;也是历史最长的神经元模型。近若干年来,随着神经网络理论的发展,出现了不少新颖的神经元数学模型,这些模型包括逻辑神经元模型,模糊神经元模型等,并且渐渐也受到人们的关注和重视。 能对商品价格、股票价格和企业的可信度等进行短期预测
另外,在数据挖掘、电力系统、交通、军事、矿业、农业和气象等方面亦有应用。
⑦ 神经网络模型
你自行搭建的神经抄网络模型,权值和阈值仍然是要通过训练得到的。初始化后,将BP算法加到这个模型上,不断调整权值。可以先用神经网络工具箱训练好一个网络,再将权值和阈值导出。
net.IW{1,1}=W1;
net.LW{2,1}=W2;
net.b{1}=B1;
net.b{2}=B2;
注意要反过来,如果是导出的话。
⑧ 神经网络优缺点,
优点:
(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。
自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
(3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
缺点:
(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)理论和学习算法还有待于进一步完善和提高。
(8)神经网络模型推广扩展阅读:
神经网络发展趋势
人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。
将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。
由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。
参考资料:网络-人工神经网络
⑨ 神经网络模型的介绍
神经网络(Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学习系统。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络的基础在于神经元。
神经元是以生物神经系统的神经细胞为基础的生物模型。在人们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元数学化,从而产生了神经元数学模型。
大量的形式相同的神经元连结在—起就组成了神经网络。神经网络是一个高度非线性动力学系统。虽然,每个神经元的结构和功能都不复杂,但是神经网络的动态行为则是十分复杂的;因此,用神经网络可以表达实际物理世界的各种现象。
神经网络模型是以神经元的数学模型为基础来描述的。人工神经网络(ArtificialNuearlNewtokr)s,是对人类大脑系统的一阶特性的一种描。简单地讲,它是一个数学模型。神经网络模型由网络拓扑.节点特点和学习规则来表示。神经网络对人们的巨大吸引力主要在下列几点:
1.并行分布处理。
2.高度鲁棒性和容错能力。
3.分布存储及学习能力。
4.能充分逼近复杂的非线性关系。
在控制领域的研究课题中,不确定性系统的控制问题长期以来都是控制理论研究的中心主题之一,但是这个问题一直没有得到有效的解决。利用神经网络的学习能力,使它在对不确定性系统的控制过程中自动学习系统的特性,从而自动适应系统随时间的特性变异,以求达到对系统的最优控制;显然这是一种十分振奋人心的意向和方法。
人工神经网络的模型现在有数十种之多,应用较多的典型的神经网络模型包括BP神经网络、Hopfield网络、ART网络和Kohonen网络。 学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法。而有的算法可能可用于多种模型。在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如Bp网络,Hopfield网络,ART络和Kohonen网络中;Bp网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Khonone网络则无需教师信号就可以学习49[]。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。
⑩ 如何建立bp神经网络预测 模型
建立BP神经网络预测 模型,可按下列步骤进行:
1、提供原始数据
2、训回练数据预测数据提答取及归一化
3、BP网络训练
4、BP网络预测
5、结果分析
现用一个实际的例子,来预测2015年和2016年某地区的人口数。
已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人
执行BP_main程序,得到
[ 2015, 5128.631704710423946380615234375]
[ 2016, 5100.5797325642779469490051269531]
代码及图形如下。