导航:首页 > 培训大全 > 水吧台刀具基础知识培训有哪些

水吧台刀具基础知识培训有哪些

发布时间:2021-12-13 15:46:46

A. 钳工基础知识理论培训试题

钳工技术等级岗位标准
一、 职业定义 使用钳工工具、钻床、按技术要求对工件进行加工、修整、装配。
二、 适用范围 零件制作、划线、刮削、装配;立钻、摇臂钻、台钻等专用设备的操作、保养。
三、 技术等级线 初、中、高三级 初级钳工 。

知识要求
1. 自用设备的名称、型号、规格、性能、结构和传动系统。
2. 自用设备的润滑系统、使用规则和维护保养方法。
3. 常用工、夹、量具的名称、规格、用途、使用规则和维护保养方法。
4. 常用刀具的种类、牌号、规格和性能;刀具几何参数对切削性能的影响;合理选择切削用量,提高刀具寿命的方法。
5. 常用金属材料的种类、牌号、力学性能、切削性能和切削过程中的热膨胀知识;金属热处理常识。
6. 常用润滑油的种类和用途;常用切削液的种类、用途及其对表面粗糙度的影响。
7. 机械识图、公差配合、形位公差和表面粗糙度的基本知识。
8. 常用数学计算知识。
9. 机械传动和典型机构的基本知识。
10. 液压传动和气压传动的入门知识。
11. 钳工操作、装配的基本知识。
12. 分度头的结构、传动和分度方法。
13. 确定零件加工余量的知识。
14. 钻模的种类和使用方法。
15. 快换夹头、攻螺纹夹头的构造及使用知识。
16. 螺纹的种类、用途及各部分尺寸的关系;螺纹底孔直径和套螺纹时圆杆直径的确定方法。
17. 刮削知识;刮削原始平板的原理和方法。
18. 研磨知识;磨料的种类及研磨剂的配制方法。
19. 金属棒料、板料的矫正和弯形方法。
20. 弹簧的种类、用途、各部为尺寸和确定作用力的方法。
21. 废品产生的原因和预防措施。
22. 相关工种一般工艺知识。
23. 电气的一般常识和安全用电;机床电器装置的组成部分及其用途。
24. 安全技术规程。
技能要求
1. 使用和维护保养自用设备。
2. 选用和维护保养自用和各种工、夹、量具。
3. 各种刀头、钻头的刃磨;刮刀、錾子、样冲、划针、划规的淬火和刃磨。
4. 看懂零件图、部件装配图,绘制简单零件图,正确执行工艺规程。
5. 一般工件划线基准面的选择和划线时工件的安装。
6. 根据工件材料和刀具,选用合理的钻削用量。
7. 一般工件在通用、专用夹具上的安装。
8. 一般工件的划线及钻孔、攻螺纹、铰孔(锥孔用涂色法检查接接触面积70%以上),铰削表面的表面粗糙度达到Ra1.6m。
9. 刮削2级精度平板。
10. 制作角度样板及较简单的弧形样板。
11. 盘制钢丝直径3mm以内的各种弹簧。
12. 一般机械的部件装配,简单机械(卷扬机、电动葫芦等)的总装配。
13. 正确执行安全技术操作规程。 14. 做到岗位责任制和文明生产的各项要求。

B. 刀具基础知识

0.7μm:刀具的精度,应该是跳动小于等于0.7微米,
CO10%:钴含量百分之十。
HRC~50:洛氏硬度50度。
AItin:氮钛铝涂层。
至于你要的匹配表,可以到YG-1刀具网站查询(中国工厂叫万基万,在青岛,一家韩国企业,又名养志园)。
你是铣刀使用者吗,我是做到刀具的,负责的讲,我有比这更好的刀具。

C. 机械学习的基础知识都有哪些

数学: 微积分、线性代数、概率与统计、数值计算方法、力学;材内料力学、 工程力学 机械容基础课:机械专业英语,机械制图,机械原理,工程材料,机械制造基础,机械控制工程基
础,现代加工技术,数控加工技术,特种加工技术,刀具设计,
机械制造装备技术,液压控制系统,机电一体化技术,等等基本专业书
物理课 : 大学物理,机械物理,
这些只是机械专业的入门基础课,这些都是书籍,你上网就可以查出来相关的书,书名字就是上边的
机械人不好做,希望帮到你
要悬赏哦!

D. 如何学习机械基础知识

制图是机械最基础的,学机械都是先从制图开始的,你还是细心钻研以下版制图吧,买本教程书权,先从点、线、面学起,然后看零件图,看零件图时可以找到实体零件结合图纸慢慢看,不就就能看明白,千万不要急,看图是靠积累的,和其他基础没什么关系,就是机械的博士也不一定有老工人看图看的好。
UG制图是CAD的最后学的,如果你不自己画图,只是检查别人的画也不必都会,找个人教教你UG简单用法。应该有10多个小时就能明白大意了,但还是那句话,读图是基础,基础!!

E. 切削刀片有什么基础知识

一个一般的机加工车间每年可能要消耗数千枚切削刀片。一位操作工人可能每天都要使用许多切削刀片,但却从来没有细想过在这些刀片背后蕴藏的复杂科学知识。了解一些有关切削刀片的制造工艺技术,对于刀具的正确使用和性能优化将会大有裨益。
硬质合金刀片的成分:
与所有人造制品一样,制造切削刀片首先要解决原材料的问题,即确定刀片材料的成分与配方。现在的大部分刀片都是由硬质合金制成,其主要成分为碳化钨(WC)和钴(Co)。WC是刀片中的硬质颗粒,而Co作为结合剂可使刀片成形。
改变硬质合金特性最简单的方法就是通过改变所用WC颗粒的晶粒尺寸。用粒度较大(3-5μm)的WC颗粒制备的硬质合金材料硬度较低,比较容易磨损;用粒度较小(<1μm)的WC颗粒则可以生产出硬度较高、耐磨性较好,但脆性也较大的硬质合金材料。在加工硬度非常高的金属材料时,采用细晶粒硬质合金刀片可能会获得最理想的加工效果。而另一方面,粗晶粒硬质合金刀片在断续切削或其他对刀片韧性要求较高的加工中性能更为优越。
控制硬质合金刀片特性的另一种方法是改变WC与Co的含量比例。与WC相比,Co的硬度低得多,但韧性更好,因此,减少Co含量将获得硬度更高的刀片。当然,这再一次提出了综合平衡的问题——硬度更高的刀片具有更好的耐磨性,但其脆性也更大。根据具体的加工类型,选择适当的WC晶粒尺寸和Co含量比,需要相关的科学知识和丰富的加工经验。
通过应用梯度材料技术,在一定程度上可以避免在刀片强度与韧性之间进行妥协取舍。这项全球主要刀具制造商均已普遍应用的技术包括,在刀片的外层采用比内层更高的Co含量比。更具体地说,就是在刀片的外层(厚度为15-25μm)增大Co含量,以提供类似于“缓冲区”的作用,使刀片可以承受一定的冲击而不会破裂。这就使刀片的刀体可以获得采用强度更高的硬质合金成分才能实现的各种优异性能。
一旦确定了原材料的粒度、成分等技术参数,就可以开始切削刀片的实际制造流程。首先将符合配比的钨粉、碳粉和钴粉放入一个尺寸与洗衣机差不多大的碾磨机中,将粉料碾磨到所需要的粒度,并将各种材料均匀混合。在碾磨过程中加入酒精和水,制备出一种浓稠的黑色浆料。然后将这种浆料放入一台旋风干燥机中,将其中的液体蒸发以后,就获得了团块状的粉料,并将其贮存起来。
在下一步制备工艺中,可以获得刀片的雏形。首先,将制备好的粉料与聚乙二醇(PEG)混合,PEG作为一种增塑剂,可将粉料像面团一样临时粘结在一起。然后在压模中将材料压制成刀片的形状。根据不同的刀片压制方法,可以采用单轴压机进行压制,也可以采用多轴压机从不同的角度压制出刀片形状。
获得压制成形的坯料后,将其置于一个大型烧结炉中,在高温下进行烧结。在烧结过程中,PEG从坯料混合物中被融化排出,最后留下硬质合金刀片的半成品。当PEG被融出后,刀片收缩到其最终尺寸。这一工艺步骤需要进行精确的数学计算,因为根据不同的材料成分和配比,刀片的收缩量也各不相同,而且要求将成品的尺寸公差控制在几个微米以内。
刀片涂层的制备:
此时,产品的形态已经与最终的成品刀片相差无几。但是,为了获得最佳切削性能,还必须对刀片进行表面涂层。最常用的刀片涂层工艺是化学气相沉积(CVD)工艺,即通过高电流将某种金属靶材离子化,然后通过蒸发冷凝沉积到刀片上。可以将这一过程形象地比喻为,当柏油路面的温度变得非常低,而空气中又充满高浓度的水汽时,就会在路面上形成一层薄冰。不过,与此不同的是,虽然置于涂层炉中的刀片温度相对较低,但实际炉温可能超过480℃。
另一种常用的刀片涂层工艺是物理气相沉积(PVD)工艺。与CVD工艺相比,采用PVD技术可以沉积出更薄的涂层,从而可使切削刃更锋利,在切削难加工材料(如淬硬钢、钛合金和耐热超级合金)时可获得更优异的切削性能。
在典型的刀片CVD涂层工艺中,刀片上涂覆的第一层涂层为氮碳化钛(TiCN)。这种涂层材料能提供优异的耐磨性,而且还具有易于与硬质合金基体粘结的优点。通常,氧化铝(Al2O3)被用作第二层涂层。这种涂层具有极佳的热稳定性和化学稳定性,能保护刀片免受切削高温和冷却液中化学成分的不利影响。
TiCN和Al2O3涂层的厚度主要取决于刀片的加工类型。例如,车削加工硬材料时,需要对刀片进行充分保护,因此每种涂层的厚度可能都需要达到10μm。而对于软材料的精加工,涂覆5μm厚的TiCN层和2μm厚的Al2O3层可能更为适当。
完成了TiCN和Al2O3涂层的制备后,切削刀片在使用功能上已接近成品。遗憾的是, Al2O3涂层的颜色是全黑色,使用者很难分辨刀片的哪些工作面已经使用过,以及切削刃是否已被磨损。为了解决这一问题,大多数刀具制造商都会在刀片上最后再涂覆一层氮化钛(TiN)涂层。这种亮金色的涂层具有很好的可视性,使用者可以通过其颜色的变化,很容易地评估切削刀片的磨损状态。
过去,涂覆完TiN涂层就标志着切削刀片的制造全部完成。但近年来,还有最后一道工序已变得逐渐普及。在CVD或PVD涂层工序中,当刀片冷却时,不同涂层材料的收缩程度各不相同。因此,在各层涂层中会产生应力,并出现微裂纹。为了消除这些应力,并最大限度地减少微裂纹,人们采用了一种用酒精、氧化铝和细砂的混合物对刀片进行喷砂处理的先进技术。在喷砂处理完成后,切削刀片的制造就大功告成了。
刀片几何形状的作用:
一提到切削刀片的几何形状,大多数刀具制造商都会马上开始描述刀片的宏观几何形状(物理外形)。而一个近年来快速发展的研究领域——刀片切削刃微观几何形状的优化——值得予以高度重视。
在宏观水平上,刀片几何形状的优化主要涉及为实现切屑控制而可能采用的最佳外形。根据不同的工件材料和加工方式,采用不同的刀片形状和角度能够提供断屑和将切屑从切削区排出的最优结果。刀片宏观几何形状的设计与优化已是一个相当成熟的技术领域,大部分主要的刀具制造商都精通此道。
直到最近几年,技术的发展才达到了能够控制刀片微观几何形状的水平。利用先进的加工技术,可以在刀片的切削表面制备出圆形、椭圆形或带角度的切削刃,还可以将微小的倒棱或沟槽引入刀片切削刃。随着各种创新技术的应用,人们能够在微小尺度上对刀片进行钝化处理和测量,从而使刀片的使用寿命和加工稳定性获得了极大提高。可以相当肯定地预期,今后的技术进步将进一步推动该领域的发展,并将取得更显着的成果。
陶瓷刀片技术:
尽管绝大多数切削刀片都用硬质合金制造,但用其他材料制造的刀片正日益增多。其中,陶瓷刀片可能是一种最主要的非硬质合金刀片。随着耐热合金材料(如Inconel合金)在航空工业和其他行业零部件中的应用日趋广泛,陶瓷刀片在对这些难加工材料的加工中表现出了优异的切削性能。
陶瓷刀片的制造工艺与硬质合金刀片非常相似。由于陶瓷不像其他材料那样容易粘结,因此在烧结时必须采用高得多的温度和压力。
通常,在陶瓷刀片中使用碳化硅(SiC)晶须能够增加其强度。这些细小的纤维可以起到用钢筋来强化混凝土的相同作用。过去,在陶瓷中添加SiC的强化效果相对较小,但近年来的技术突破已经改变了这种状况。新的工艺可使SiC晶须定向于特定的方向,从而大大提高了强化效果。与其他刀片材料相比,陶瓷的脆性更大,也经常会出现缺陷。加入正确定向的SiC晶须可以显着减缓陶瓷刀片的碎裂失效过程,因为刀片中的微裂纹需要更大的能量,才能穿过整齐排列的晶须。随着这种技术和其他类似技术的继续发展,陶瓷刀片将成为一种适合各种加工的、更具可行性的解决方案。
从切削刀片中获得更多收益:
从购买决策的角度来看,对于切削刀片,需要牢记的、最重要的事情是不过忽略那些难以观察到的方面。如果不通过切削试验,即使仔细检查,可能也很难分辨出优质刀片与劣质刀片的差别。因为刀片的外表都差不多而选用廉价刀片,将不可避免地在以后的加工中增加成本。
在选择刀片牌号时,理想的做法是咨询刀具制造商的技术专家。除此之外,还可以利用一些基本概念,来缩小可供选择的刀片范围。大部分刀具制造商都采用一种可以反映刀片特性的方式来给它们编号。以山特维克可乐满的产品为例,一种刀片牌号的第一位数反映了其所属的大类,如4表示加工钢的牌号,3表示加工铸铁的牌号,2表示加工不锈钢的牌号。在每个类别中,最后两位数字表示该刀片的硬度。数字小,表示硬度较高,但脆性也较大;数字大,则表示硬度较低,但韧性较好。为了查找所需刀片的类别,加工车间最好从产品目录的中间开始,根据其性能向前或向后查找。
最后,如果某种刀片没有达到最佳切削性能,可以找到一些有助于确定解决方案的证据。用放大镜仔细观察刀片的切削刃,就可以揭示问题的实质。如果检查表明,刀片切削刃出现了明显的磨料磨损或微小变形,说明刀片硬度偏低,需要换用硬度更高的牌号。如果刀片发生了崩刃,切削刃出现了小块缺失,则可能需要改用硬度较低、韧性较好的牌号。通过了解切削刀片是如何制造的,以及如何为特定的加工定制不同的刀片牌号,就可以采取各种具有针对性的措施,来提高加工效率和降低加工成本。

F. 我想自己做几把刀,了解下刀具成型的基础知识。

看来你是想加工刀具。 户外刀具用钢材看要求了,最基本的硬度、韧性、锋利保持度、防锈能力。硬度高的可以用模具钢、甚至粉末合金,低一点可以用8CR13MOV、440C,对防锈要求不高可以用T10。当然说这都是热处理手艺过硬才行,不会热处理不可能做出好刀。 大批量刀坯形状可以做冲裁模,手工可以用角磨机割边,注意不要过热退火了。刀腹的斜面可以用砂轮机磨,注意加水。弧线开刃,转动胳膊和手腕保持刀具刃口法线与磨刀石平行,刀身平面与磨石夹角15~20度(户外刀具角度大点)也需注意磨石的选择,加水或加油研磨。你说的铜吞口是不是指护手挡块,需要在材料上钻孔套在刀身上的,形状是磨出来的。材料可以选304不锈钢或者镍合金,黄铜虽好看,但不耐用,汗水在上面容易留下腐蚀颜色,需要很频繁的打磨抛光。刀柄材料一个要求,与刀身的接触面坚硬、不易吸水变形。红木、紫檀、竹片、牛骨、鹿角都行。 设备嘛,有带磨机最好,角磨机、台钻或手钻、砂轮机、恒温电炉(热处理)、水泵(泵冷却水用)、手锯、台钳、G型夹、锉刀、各目数磨石、细砂纸、砂布。使用电动机械,由于摩擦产生大量热量,导致退火,硬度韧性都受大影响,所以用电动工具都需加冷却水。电钻可以滴一点切削油,最好不要热处理后再进行形状加工(开刃除外),热处理后硬度提升很明显,若此时再切磨,第一毁工具,第二费时间,第三更易退火。如果买了已经热处理过的钢料,你只能慢慢来,加过量冷却水有助提升磨削速度。
我说了这么多,都只是说,更需要你去做。耐心是第一要诀。做到一多半费了很正常,哪个刀匠没做费几把刀? TIPS:电动工具效率高,也容易出错,不是用得牛逼,就不要用它做精细活,手一抖说不定就费了。先开个大样,剩下的手工慢慢来。
还有热处理后硬度高,但较脆。碰上模具钢、粉末钢、高速钢,不能拿大锤敲,会断。刀越长刀身要求越韧,硬度超HRC62的材料只适合做300mm内的小刀,刃部与刀身热处理工艺不一样的另说。网上大神有的是,多转转。

G. 硬质合金刀具材料都有哪些基础知识

硬质合金是使用最广泛的一类高速加工(HSM)刀具材料,此类材料是通过粉末冶金工艺生产的,由硬质碳化物(通常为碳化钨WC)颗粒和质地较软的金属结合剂组成。目前,有数百种不同成分的WC基硬质合金,它们中大部分都采用钴(Co)作为结合剂,镍(Ni)和铬(Cr)也是常用的结合剂元素,另外还可以添加其他一些合金元素。为什么有如此之多的硬质合金牌号?刀具制造商如何为某种特定的切削加工选择正确的刀具材料?为了回答这些问题,首先让我们了解一下使硬质合金成为一种理想刀具材料的各种特性。
硬度与韧性:
WC-Co硬质合金在兼具硬度和韧性方面具有独到优势。碳化钨(WC)本身具有很高的硬度(超过刚玉或氧化铝),而且在工作温度升高时其硬度也很少下降。但是,它缺乏足够的韧性,而这对于切削刀具是必不可少的性能。为了利用碳化钨的高硬度,并改善其韧性,人们利用金属结合剂将碳化钨结合在一起,从而使这种材料既具有远远超过高速钢的硬度,同时又能够承受在大多数切削加工中的切削力。此外,它还能承受高速加工所产生的切削高温。
如今,几乎所有的WC-Co刀具和刀片都采用了涂层,因此,基体材料的作用似乎显得不太重要了。但实际上,正是WC-Co材料的高弹性系数(衡量刚度的指标,WC-Co的室温弹性系数约为高速钢的三倍)为涂层提供了不变形的基底。WC-Co基体还能提供所需要的韧性。这些性能都是WC-Co材料的基本特性,但也可以在生产硬质合金粉体时,通过调整材料成分和微观结构而定制材料性能。因此,刀具性能与特定加工的适配性在很大程度上取决于最初的制粉工艺。
制粉工艺:
碳化钨粉是通过对钨(W)粉进行渗碳处理而获得的。碳化钨粉的特性(尤其是其粒度)主要取决于原料钨粉的粒度以及渗碳的温度和时间。化学控制也至关重要,碳含量必须保持恒定(接近重量比为6.13%的理论配比值)。为了通过后续工序来控制粉体粒度,可以在渗碳处理之前添加少量的钒和/或铬。不同的下游工艺条件和不同的最终加工用途需要采用特定的碳化钨粒度、碳含量、钒含量和铬含量的组合,通过这些组合的变化,可以产生各种不同的碳化钨粉。例如,碳化钨粉生产商ATI Alldyne公司共生产23种标准牌号的碳化钨粉,而根据用户要求定制的碳化钨粉品种可达标准牌号碳化钨粉的5倍以上。
在将碳化钨粉与金属结合剂一起进行混合碾磨以生产某种牌号硬质合金粉料时,可以采用各种不同的组合方式。最常用的钴含量为3%-25%(重量比),而在需要增强刀具抗腐蚀性的情况下,则需要加入镍和铬。此外,还可以通过添加其他合金成分,进一步改良金属结合剂。例如,在WC-Co硬质合金中添加钌,可在不降低其硬度的前提下显著提高其韧性。增加结合剂的含量也可以提高硬质合金的韧性,但却会降低其硬度。
减小碳化钨颗粒的尺寸可以提高材料的硬度,但在烧结工艺中,碳化钨的粒度必须保持不变。烧结时,碳化钨颗粒通过溶解再析出的过程结合和长大。在实际烧结过程中,为了形成一种完全密实的材料,金属结合剂要变成液态(称为液相烧结)。通过添加其他过渡金属碳化物,包括碳化钒(VC)、碳化铬(Cr3C2)、碳化钛(TiC)、碳化钽(TaC)和碳化铌(NbC),可以控制碳化钨颗粒的长大速度。这些金属碳化物通常是在将碳化钨粉与金属结合剂一起进行混合碾磨时加入,尽管碳化钒和碳化铬也可以在对碳化钨粉进行渗碳时形成。
利用回收的废旧硬质合金材料也可以生产牌号碳化钨粉料。废旧硬质合金的回收和再利用在硬质合金行业已有很长历史,是该行业整个经济链的一个重要组成部分,它有助于降低材料成本、节约自然资源和避免对废弃材料进行无害化处置。废旧硬质合金一般可通过APT(仲钨酸铵)工艺、锌回收工艺或通过粉碎后进行再利用。这些“再生”碳化钨粉通常具有更好的、可预测的致密性,因为其表面积比直接通过钨渗碳工艺制成的碳化钨粉更小。
碳化钨粉与金属结合剂混合碾磨的加工条件也是至关重要的工艺参数。两种最常用的碾磨技术是球磨和超微碾磨。这两种工艺都能使碾磨的粉料均匀混合,并能减小颗粒尺寸。为使以后压制的工件具有足够的强度,能保持工件形状,并使操作者或机械手能拿起工件进行操作,在碾磨时通常还需要添加一种有机结合剂。这种结合剂的化学成分可以影响压制成工件的密度和强度。为了有利于操作,最好添加高强度的结合剂,但这样会导致压制密度较低,并可能会产生硬块,造成在最后成品中存在缺陷。
完成碾磨后,通常会对粉料进行喷雾干燥,产生由有机结合剂凝聚在一起的自由流动团块。通过调整有机结合剂的成分,可以根据需要定制这些团块的流动性和装料密度。通过筛选出较粗或较细的颗粒,还可以进一步定制团块的粒度分布,以确保其在装入模腔时具有良好的流动性。
工件制造:
硬质合金工件可采用多种工艺方法成型。根据工件的尺寸、形状复杂水平和生产批量,大部分切削刀片都是采用顶压和底压式刚性模具模压成型。在每一次压制时,为了保持工件重量和尺寸的一致性,必须保证流入模腔的粉料量(质量和体积)都完全相同。粉料的流动性主要通过团块的尺寸分布和有机结合剂的特性来控制。通过在装入模腔的粉料上施加10-80ksi(千磅/平方英尺)的成型压力,就可以形成模压工件(或称“坯件”)。
即便在极高的成型压力下,坚硬的碳化钨颗粒也不会变形或破碎,而有机结合剂却被压入碳化钨颗粒之间的缝隙之中,从而起到固定颗粒位置的作用。压力越高,碳化钨颗粒的结合就越紧密,工件的压制密度就越大。牌号硬质合金粉料的模压特性可能各不相同,取决于金属结合剂的含量、碳化钨颗粒的尺寸和形状、形成团块的程度,以及有机结合剂的成分和添加量。为了提供有关牌号硬质合金粉料压制特性的量化信息,通常由粉料生产商来设计构建模压密度与成型压力的对应关系。这种信息可确保提供的粉料与刀具制造商的模压工艺协调一致。
大尺寸硬质合金工件或具有高长宽比的硬质合金工件(如立铣刀和钻头的刀杆)通常采用在一个柔性料袋中均衡压制牌号硬质合金粉料来制造。虽然均衡压制法的生产周期比模压法要长一些,但刀具的制造成本较低,因此该方法更适合小批量生产。
这种工艺方法是将粉料装入料袋中,并将袋口密封,然后将装满粉料的料袋置于一个腔室中,通过液压装置施加30-60ksi的压力进行压制。压制成的工件通常要在烧结之前加工成特定的几何形状。料袋的尺寸被加大,以适应压紧过程中的工件收缩,并为磨削加工提供足够的余量。由于工件在压制成型后要进行加工,因此对装料一致性的要求不像模压法那样严格,但是,仍然希望能保证每一次装入料袋的粉料量相同。如果粉料的装料密度过小,就可能导致装入料袋的粉料不足,从而造成工件尺寸偏小而不得不报废。如果粉料的装料密度过大,装入料袋的粉料过多,工件在压制成型后就需要加工去除更多的粉料。尽管去除的多余粉料和报废的工件都可以回收再用,但这样做毕竟会降低生产效率。
硬质合金工件还可以利用挤出模或注射模进行成型加工。挤出成型工艺更适合轴对称形状工件的大批量生产,而注射成型工艺通常用于复杂形状工件的大批量生产。在这两种成型工艺中,牌号硬质合金粉末悬浮在有机结合剂中,结合剂赋予硬质合金混合料像牙膏那样的均匀一致性。然后,混合料或者通过一个孔被挤出成型,或者被注入一个模腔中成型。牌号硬质合金粉料的特性决定了混合料中粉末与结合剂的最佳比例,并对混合料通过挤出孔或注入模腔的流动性具有重要影响。
当工件通过模压法、均衡压制法、挤出模或注射模成型法成型后,在最终烧结阶段之前,需要从工件中去除有机结合剂。烧结可以去除工件中的孔隙,使其变得完全(或基本上)密实。在烧结时,压制成型的工件中的金属结合剂变成液体,但在毛细作用力和颗粒联系的共同作用下,工件仍然能够保持其形状。
在烧结后,工件的几何形状保持不变,但尺寸会缩小。为了在烧结后得到所要求的工件尺寸,在设计刀具时就需要考虑其收缩率。在设计用于制造每种刀具的牌号硬质合金粉料时,都必须保证其在适当压力下压紧时具有正确的收缩率。
几乎在所有情况下,都需要对烧结后的工件进行烧结后处理。对切削刀具最基本的处理方式是刃磨切削刃。许多刀具在烧结后还需要对其几何形状和尺寸进行磨削加工。有些刀具需要磨削顶部和底部;另一些刀具则需要进行外周磨削(需要或无需刃磨切削刃)。磨削产生的所有硬质合金磨屑都可以回收再利用。
工件涂层:
在许多情况下,成品工件需要进行涂层。涂层能够提供润滑性和增加硬度,还能为基体提供扩散屏障,使其暴露于高温下时可防止氧化。硬质合金基体对于涂层的性能至关重要。除了定制基体粉料的主要特性以外,还可以通过化学选择和改变烧结方法定制基体的表面特性。通过钴的迁移,可在刀片表面最外层20-30μm厚度内富集相对于工件其余部位更多的钴,从而赋予基体表层更好的强韧性,使其具有较强的抗变形能力。
刀具制造商基于自己的制造工艺(如脱蜡方法、加热速度、烧结时间、温度和渗碳电压),可能会对使用的牌号硬质合金粉料提出一些特殊要求。有些刀具制造商可能是在真空炉中烧结工件,而另一些刀具制造商则可能使用热等静压(HIP)烧结炉(它是在工艺循环临近结束时才对工件加压,以消除任何残留孔隙)。在真空炉中烧结的工件可能还需要通过另外的工序进行热等静压处理,以提高工件密度。有些刀具制造商可能会采用较高的真空烧结温度,以提高具有较低钴含量混合料的烧结密度,但这种方法可能会使其显微结构变得粗大。为了保持细小的晶粒尺寸,可以选用碳化钨颗粒尺寸较小的粉料。为了与特定的生产设备相匹配,脱蜡条件和渗碳电压对硬质合金粉料中碳含量的高低也有不同的要求。
所有这些因素都会对烧结出的硬质合金刀具的显微结构和材料性能产生至关重要的影响,因此,在刀具制造商与粉料提供商之间需要进行密切的沟通,以确保根据刀具制造商的生产工艺定制牌号硬质合金粉料。因此,有数百种不同的硬质合金粉料牌号也就不足为奇了。例如,ATI Alldyne公司生产的不同粉料牌号就超过600种,其中每一种牌号都是针对目标用户和特定用途而专门设计的。
牌号分类:
不同种类的碳化钨粉、混合料成分和金属结合剂含量、晶粒长大抑制剂的类型和用量等的组合变化,构成了形形色色的硬质合金牌号。这些参数将决定硬质合金的显微结构及其特性。某些特定的性能组合已成为一些特定加工用途的首选,从而使对多种硬质合金牌号进行分类具有了意义。
两种最常用的、面向加工用途的硬质合金分类体系分别为C牌号体系和ISO牌号体系。尽管这两种体系都不能完全反映影响硬质合金牌号选择的材料特性,但它们提供了一个探讨的起点。对于每种分类法,许多制造商都有它们自己的特殊牌号,由此产生了形形色色、五花八门的各种硬质合金牌号。
硬质合金牌号还可以按照成分来分类。碳化钨(WC)牌号可分为三种基本类型:单纯型、微晶型和合金型。单纯型牌号主要由碳化钨和钴结合剂构成,但其中也可能含有少量晶粒长大抑制剂。微晶型牌号由碳化钨和添加了几千分之一碳化钒(VC)和(或)碳化铬(Cr3C2)的钴结合剂构成,其晶粒尺寸可达到1μm以下。合金型牌号则是由碳化钨和含有百分之几碳化钛(TiC)、碳化钽(TaC)和碳化铌(NbC)的钴结合剂构成,这些添加物又称为立方碳化物,因为其烧结后的显微结构呈现出不均匀的三相结构。
(1)单纯型硬质合金牌号
用于金属切削加工的此类牌号通常含有3%-12%的钴(重量比)。碳化钨晶粒的尺寸范围通常在1-8μm之间。与其他牌号一样,减小碳化钨的粒度可以提高其硬度和横向断裂强度(TRS),但会降低其韧性。单纯型牌号的硬度通常在HRA89-93.5之间;横向断裂强度通常在175-350ksi之间。此类牌号的粉料中可能含有大量回收再用的原料。
单纯型牌号在C牌号体系中可分为C1-C4,在ISO牌号体系中可按K、N、S和H牌号系列进行分类。具有中间特性的单纯型牌号可以归类为通用牌号(如C2或K20),可用于车削、铣削、刨削和镗削加工;晶粒尺寸较小或钴含量较低、硬度较高的牌号可以归类为精加工牌号(如C4或K01);晶粒尺寸较大或钴含量较高、韧性较好的牌号可以归类为粗加工牌号(如C1或K30)。
用单纯型牌号制造的刀具可用于切削加工铸铁、200和300系列不锈钢、铝和其他有色金属、高温合金和淬硬钢。此类牌号还能应用于非金属切削领域(如作为岩石和地质钻探工具),这些牌号的晶粒尺寸范围在1.5-10μm(或更大),钴含量为6%-16%。单纯型硬质合金牌号的另一种非金属切削类用途是制造模具和冲头,这些牌号通常具有中等大小的晶粒尺寸,钴含量为16%-30%。
(2)微晶型硬质合金牌号
此类牌号通常含有6%-15%的钴。在液相烧结时,添加的碳化钒和(或)碳化铬可以控制晶粒长大,从而获得粒度小于1μm的细晶粒结构。这种微细晶粒牌号具有非常高的硬度和500ksi以上的横向断裂强度。高强度与足够的韧性相结合,使此类牌号的刀具可以采用更大的正前角,从而能通过切削而不是推挤金属材料来减小切削力和产生较薄的切屑。
通过在牌号硬质合金粉料的生产中对各种原材料进行严格的品质鉴定,以及对烧结工艺条件实施严格的控制,防止在材料显微结构中形成非正常的大晶粒,就能获得适当的材料性能。为了保持晶粒尺寸细小且均匀一致,只有在能对原料和回收工艺进行全面控制,以及实施广泛质量检测的情况下,才能使用回收的再生粉料。
微晶型牌号可在ISO牌号体系中可按M牌号系列进行分类,除此以外,在C牌号体系和ISO牌号体系中的其他分类方法与单纯型牌号相同。微晶牌号可用于制造切削较软工件材料的刀具,因为这种刀具的表面可以加工得非常光滑,并能保持极其锋利的切削刃。
微晶牌号刀具还能用于加工镍基超级合金,因为这种刀具能够承受高达1200℃的切削温度。对于高温合金和其他特殊材料的加工,采用微晶牌号刀具和含钌的单纯牌号刀具,能够同时提高其耐磨性、抗变形能力和韧性。微晶牌号还适合制造会产生剪切应力的旋转刀具(如钻头)。有一种钻头采用复合牌号的硬质合金制造,在同一支钻头的特定部位,材料中的钴含量各不相同,从而根据加工需要优化了钻头的硬度和韧性。
(3)合金型硬质合金牌号
此类牌号主要用于切削加工钢件,其钴含量通常为5%-10%,晶粒尺寸范围为0.8-2μm。通过添加4%-25%的碳化钛(TiC),可以减小碳化钨(WC)扩散到钢屑表面的倾向。通过添加不超过25%的碳化钽(TaC)和碳化铌(NbC),可以改善刀具的强度、抗月牙洼磨损能力和耐热冲击性。添加此类立方碳化物还能提高刀具的红硬性,在重载切削或切削刃会产生高温的其他加工中,有助于避免刀具发生热变形。此外,碳化钛在烧结过程中能提供成核位置,改善立方碳化物在工件中的分布均匀性。
一般来说,合金型硬质合金牌号的硬度范围为HRA91-94,横向断裂强度为150-300ksi。与单纯型牌号相比,合金型牌号的耐磨料磨损性能较差,且强度较低,但其耐粘结磨损的性能更好。合金型牌号在C牌号体系中可分为C5-C8,在ISO牌号体系中可按P和M牌号系列进行分类。具有中间特性的合金型牌号可以归类为通用牌号(如C6或P30),可用于车削、攻丝、刨削和铣削加工。硬度最高的牌号可以归类为精加工牌号(如C8和P01),用于精车和镗削加工。这些牌号通常具有较小的晶粒尺寸和较低的钴含量,以获得所需要的硬度和耐磨性。不过,通过添加较多的立方碳化物也能获得类似的材料特性。韧性最好的牌号可以归类为粗加工牌号(如C5或P50)。这些牌号通常具有中等大小的粒度和高钴含量,立方碳化物的添加量也较少,以通过抑制裂纹扩展而获得所需要的韧性。在断续车削加工中,通过采用上述刀具表面具有较高钴含量的富钴牌号,还可以进一步提高切削性能。
碳化钛含量较低的合金型牌号用于切削加工不锈钢和可锻铸铁,但也可用于加工有色金属(如镍基超级合金)。这些牌号的晶粒尺寸通常小于1μm,钴含量为8%-12%。硬度较高的牌号(如M10)可用于车削加工可锻铸铁;而韧性较好的牌号(如M40)可用于铣削和刨削钢件,或者用于车削不锈钢或超级合金。
合金型硬质合金牌号还能用于非金属切削类用途,主要用于制造耐磨零件。这些牌号的粒度通常为1.2-2μm,钴含量为7%-10%。在生产这些牌号时,通常会加入很大比例的回收原料,从而在耐磨零件的应用中获得较高的成本效益。耐磨零件需要具有很好的耐腐蚀性和较高的硬度,在生产此类牌号时,可以通过添加镍和碳化铬来获得这些性能。
为了满足刀具制造商在技术性和经济性上的双重要求,硬质合金粉料是关键要素。针对刀具制造商的加工设备和工艺参数而设计的粉料可确保成品工件的性能,并导致出现了数百种硬质合金牌号。硬质合金材料可循环利用的特点以及可直接与粉料提供商合作的能力,使刀具制造商能够有效控制其产品质量和材料成本。

H. 做一个刀具销售工程师需要知道哪些知识

刀具工程师是一个很笼统的概念。
对于刀具使用者而言,刀具工程师一般指刀具管理工程师,需要刀具使用的基础知识,对刀具材料应用的定性概念,刀具应用的经济、技术基础等;
对刀具销售着而言,可分为刀具销售工程师、刀具应用工程师等,由于各销售公司销售产品不同,其知识需求有很大不同;
对刀具制造者而言,可分为刀具开发工程师、刀具设计工程师、刀具制造工程师等,那就对专业要求更高了。

I. 给一些钳工的入门基础知识

维修钳工岗位达标试题库
填空题:
1、液压泵的主要性能参数有流量、容积效率、压力、功率、机械效率、总效率。2、液压泵的种类很多,常见的有齿轮泵、叶片泵、柱塞泵、螺杆泵。3、液压控制阀可分为方向控制阀、压力控制阀、流量控制阀三大类,4、压力控制阀用来控制、调节液压系统中的工作压力,以实现执行元件所要求的力或力矩。5、压力控制阀包括溢流阀、减压阀、顺序阀等。6、流量控制阀是控制、调节油液通过阀口的流量,而使执行机构产生相应的运动速度。7、流量控制阀有节流阀、调速阀等。8、单向阀的作用是使油液只能向一个方向流动。9、方向控制阀的作用是控制液压系统中的油流方向,以改变执行机构的运动方向或工作顺序。10、换向阀是利用阀芯和阀体的相对运动来变换油液流动的方向,接通或关闭油路。
机械制造图样上所标注的法定长度为毫米,法定长度与英制的换算关系为1英寸=25.4毫米
除锈的方法分为机械除锈法,化学除锈法,电化学除锈法。
键联结分为松键联接、紧键联接、花键联接。
滚动轴承按所承受的负荷的方向和大小分为向心类和推力类。
测量方法的误差包括 系统 误差 随机 误差。
常用的拆卸方法有 击卸法、拉拔法、顶压法、温差、破坏法。
锉刀工作面上起主要锉削作用的锉纹是主锉纹。
铆接时,铆钉直径的大小与被联接板的厚度有关。
弹簧在不受外力作用时的高度(或长度)称为自由高度(或长度)。
钻孔时加切削液的主要目的是冷却作用。
丝锥由工作部分和锥柄两部分组成。
锯条的切削角度:前角、后角。
联轴器分为刚性联轴器 柔性 联轴器。
同类规格的呆扳手与活动扳手,使用时比较安全的是 呆扳手 ,使用时比较方便的是 活动扳手 。
设备一级保养由操作者 执行,负责设备日常润滑保养。设备的二级保养由 维修工 执行,负责设备检修、系统维护等工作。
举三种常用螺纹的种类 直螺纹、锥罗纹、梯形螺纹。
列举三种常用的液压控制阀电磁换向阀、溢流阀、减压阀、顺序阀。
机械生产采用的配合性质有:过盈配合、过度配合、间隙配合。
相同零件可以互相调换并仍能保证机器或部件性能要求的性质叫零件的互换性。(公差配合)
尺寸公差是指允许尺寸的变动量,即等于最大极限尺寸(或上偏差)与最小极限尺寸(或下偏差)之代数差的绝对值。
互换性条件,即保证零件的尺寸、几何形状、相互位置和表面粗糙度等技术要求的一致性。
孔的尺寸减去相配合轴的尺寸所得的代数差,为正值时称为间隙,为负值时称为过盈。
配合代号中,分子代号为H的均为基孔制,分母代号为h的均为基轴制。
钻孔时,钻头的旋转是主运动,轴向移动是进给运动。(金属切削基本知识)
麻花钻一般用高速钢制成,淬硬至HRC62-68。由柄部、颈部及工作部分构成。柄部有直柄和锥柄两种。(钻孔、扩孔与铰孔)
钻头直径大于13mm,柄部一般作为莫氏锥柄。
当孔的精度要求较高和表面粗糙度值要求较小时,加工中应取较小的时给量,较大的切削速度。
螺纹要素包括牙型、公称直径、螺距、线数、螺纹公差带、旋向和旋合长度等。(攻螺纹与套螺纹)
攻螺纹时,丝锥切削刃对材料产生挤压,因此攻螺纹前底孔直径必须大于螺孔小径的尺寸。
螺纹相邻两牙,在中径上对应两点间的轴向距离叫螺距。
螺纹公称直径,指的是螺纹大径的基本尺寸,即外螺纹牙顶和内螺纹牙底直径。
在钢和铸铁的工作上加工同样直径的内螺纹时,钢件的底孔直径比铸铁的底孔直径稍大。
钻床一般可完成钻孔、扩孔、锪孔、铰孔和攻螺纹等加工工作。(钻床与钻床夹具)
液压传动,是用液体做为工作介质,通过动力元件,将原动机的机械能转换为液压能,然后通过管道、控制元件,借助执行元件将油液的液压能转换的机械能,驱动负载实现直线或回转运动。
液压泵是将机械能转变为液压能的能量装置。常用的液压泵有齿轮泵、叶片泵和柱塞泵等
链传动机构常见的磨损形式,有链被拉长,链和链轮磨损,链环断裂等。
带传动是利用传动带与带轮之间的摩擦力来传递运动和动力的,适用于两轴中心距较大的传动。
滚动轴承按滚动体种类分为滚子轴承、球轴承和滚针轴承。
滚动轴承是滚动摩擦性质的轴承,一般由外圈、内圈、滚动体和保持器组成。
二级保养是以机修工人为主,操作工人为辅而进行的定期性计划修理工作。
划线分 平面划线 和 立体划线 。
螺纹基本要素 牙型 、大径、螺距、线数、螺纹公差带、旋向和旋合长度。

判断题
( √ )齿轮在轴上固定当要求配合过盈量很大时,应采用液压套合法装配。
( √ )选定合适的定位元件可以保证工件定位稳定和定位误差最小。
( × )千分尺若受到撞击造成旋转不灵时,操作者应立即拆卸,进行检查和调整。
( × )用接长钻头钻深孔时,可一钻到底,不必中途退出排屑。
( × )在韧性材料上攻丝不可加冷却润滑液以免降低螺纹粗糙度。
( √ )材料弯曲时中性层一般不在材料正中,而是偏向内层材料一边。
( × )在带传中,不产生打滑的皮带是平带。
( √ )工件一般应夹在台虎钳的左面,以便操作。
( √ )液压系统一般由以液压泵为代表的动力部分,以液压缸为代表的执行部分,以各种控制阀为代表的控制部分和一些辅助装置组成的。
(×)台虎钳夹持工件时,可套上长管子扳紧手柄,以增加夹紧力。
(×)零件都必须经过划线后才能加工。
(√)锯条长度是以其两端安装孔的中心距来表示的。
(×)起锯时,起锯角越小越好。
(×)钻孔时加切削液的主要目的是提高孔的表面质量。

选择题:
1. 造成磨床工作台低速爬行的原因可能是(B)。
A、系统不可避免油液泄漏现象 B、系统中混入空气
C、液压冲击 D、空穴现象
2. 孔径较大时,应取(C)的切削速度。
A、任意 B、较大 C、较小 D、中速
4. 操作(A)时不能戴手套。
A、钻床 B、车床 C、铣床 D、机床
5. 锉刀共分三种:有普通锉、特种锉、还有(C)。
A、刀口锉 B、菱形锉 C、整形锉 D、椭圆锉
6. 当工件的强度、硬度愈大时,刀具寿命(B)。
A、愈长 B、愈短 C、不变 D、没影响
7. 将能量由原动机传递到(A)的一套装置称为传动装置。
A、工作机 B、电动机 C、汽油机 D、接收机
8. 拆卸时的基本原则,拆卸顺序与(A)相反。
A、装配顺序 B、安装顺序 C、组装顺序 D、调节顺序
9. 切削塑性较大的金属材料时形成(c)切屑。
A、带状 B、挤裂 C、粒状 D、崩碎
10. 液压传动是依靠(B)来传递运动的。
A、油液内部的压力 B、密封容积的变化
C、活塞的运动 D、油液的流动
11. 能保持传动比恒定不变的是(C)。
A、带传动 B、链传动 C、齿轮传动 D、摩擦轮传动
12. 孔的最小极限尺寸与轴的最大极限尺寸之代数差为正值叫(B)。
A、间隙值 B、最小间隙 C、最大间隙 D、最大过盈
13. 錾削硬钢或铸铁等硬材料时,楔角取(C)。
A、30°~50° B、50°~60° C、60°~70° D、70°~90°
14.液压传动的动力部分的作用是将机械能转变成液体的( C ) A、热能 B电能 C压力势能15.液压传动的动力部分一般指( B ) A、电动机 B液压泵、C、储能器16.液压传动的工作部分的作用是将液压势能转换成( A ) A、机械能 B、原子能 C、光能17.(B)是用来调定系统压力和防止系统过载的压力控制阀。 A、回转式油缸 B、溢流阀 C、换向阀18.油泵的及油高度一般应限制在(C)以下,否则易于将油中空气分离出来,引起气蚀。 A、1000mm B、6000mm C、500mm19.液压系统的油箱中油的温度一般在(B)范围内比较合适。 A、40~50℃ B 55~65℃ 65~75℃20.液压系统的蓄能器是储存和释放(A)的装置。 A、液体压力能 B、液体热能 C、电能21.流量控制阀是靠改变(C)来控制、调节油液通过阀口的流量,而使执行机构产生相应的运动速度。 A、液体压力大小 B、液体流速大小 C、通道开口的大小
22.滚动轴承的温升不得超过( A ),湿度过高时应检查原因并采取正确措施调整。 A、60~65℃ B、40~50 ℃ C、25~30℃23.将滚动轴承的一个套圈固定,另一套沿径向的最大移动量称为( B ) A、径向位移 B、径向游隙 C、轴向游隙24.轴承在使用中滚子及滚道会磨损,当磨损达到一定程度,滚动轴承将(C)而报废。 A、过热 B、卡死 C、滚动不平稳
问答题:
带传动与其他机械传动相比有什么优点?
答:(1)、带富有弹性,可缓和冲击和振动,运行平稳、无噪音。
(2)、可用于两传动轴中心距离较大的传动。
(3)、当过载时,带就会在带轮上打滑,具有过载保护作用,可以避免其他零件的损坏。
(4)、带传动结构简单、制造容易、维护方便、成本低廉。
蜗杆传动有哪些特点?它使用于哪些场合?
答:(1)、承载能力较大。
(2)、传动比大、结构紧凑。
(3)、传动准确、平稳、无噪音。
(4)、具有自锁性:即只能用蜗杆带动蜗轮,而蜗轮不能带动蜗杆传动。
(5)、传动效率低,容易发热。
(6)、蜗轮为减摩和提高传动效率采用青铜材料,导致材料成本提高。
(7)、蜗杆和蜗轮不可任意啮合。
(8)、加工蜗轮的滚刀成本高。
蜗杆传动适用于传动比大、结构紧凑、传动平稳、要求有自锁性的场合,如减速器、手拉葫芦、车床的进给机构、机床的分度头等。
钳工试题

J. 金属加工刀具都有哪些基本知识

在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。通常讲的刀具角度,是指制造和测量用的标注角度在实际工作时,由于刀具的安装位置不同和切削运动方向的改变,实际工作的角度和标注的角度有所不同,但通常相差很小。
制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。
通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。
聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。
硬质合金可转位刀片现在都已用化学气相沉积法涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。
由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。
按切削运动方式和相应的刀刃形状,刀具又可分为三类。通用刀具,如车刀、刨刀、铣刀(不包括成形的车刀、成形刨刀和成形铣刀)、镗刀、钻头、扩孔钻、铰刀和锯等;成形刀具,这类刀具的刀刃具有与被加工工件断面相同或接近相同的形状,如成形车刀、成形刨刀、成形铣刀、拉刀、圆锥铰刀和各种螺纹加工刀具等;展成刀具是用展成法加工齿轮的齿面或类似的工件,如滚刀、插齿刀、剃齿刀、锥齿轮刨刀和锥齿轮铣刀盘等。
各种刀具的结构都由装夹部分和工作部分组成。整体结构刀具的装夹部分和工作部分都做在刀体上;镶齿结构刀具的工作部分(刀齿或刀片)则镶装在刀体上。
刀具的装夹部分有带孔和带柄两类。带孔刀具依靠内孔套装在机床的主轴或心轴上,借助轴向键或端面键传递扭转力矩,如圆柱形铣刀、套式面铣刀等。
带柄的刀具通常有矩形柄、圆柱柄和圆锥柄三种。车刀、刨刀等一般为矩形柄;圆锥柄锥度承受轴向推力,并借助摩擦力传递扭矩;圆柱柄一般适用于较小的麻花钻、立铣刀等刀具,切削时借助夹紧时所产生的摩擦力传递扭转力矩。很多带柄的刀具的柄部用低合金钢制成,而工作部分则用高速钢把两部分对焊而成。
刀具的工作部分就是产生和处理切屑的部分,包括刀刃、使切屑断碎或卷拢的结构、排屑或容储切屑的空间、切削液的通道等结构要素。
有的刀具的工作部分就是切削部分,如车刀、刨刀、镗刀和铣刀等;有的刀具的工作部分则包含切削部分和校准部分,如钻头、扩孔钻、铰刀、内表面拉刀和丝锥等。切削部分的作用是用刀刃切除切屑,校准部分的作用是修光已切削的加工表面和引导刀具。
刀具工作部分的结构有整体式、焊接式和机械夹固式三种。整体结构是在刀体上做出切削刃;焊接结构是把刀片钎焊到钢的刀体上;机械夹固结构又有两种,一种是把刀片夹固在刀体上,另一种是把钎焊好的刀头夹固在刀体上。硬质合金刀具一般制成焊接结构或机械夹固结构;瓷刀具都采用机械夹固结构。

阅读全文

与水吧台刀具基础知识培训有哪些相关的资料

热点内容
移动电子渠道推广方案 浏览:965
老人粤曲晚会策划方案 浏览:170
广东本来网电子商务有限公司怎么样 浏览:448
2020年营销方案大纲 浏览:990
海虹医药电子商务 浏览:492
正月15商场促销活动 浏览:269
互联网市场营销模式创新论文 浏览:260
培训中心创建方案 浏览:31
市场营销名词意义 浏览:518
上海捷银电子商务有限公司 浏览:265
思政部师资培训方案 浏览:712
大班活动策划方案 浏览:403
护士节服装促销方案 浏览:130
2013房地产策划方案 浏览:129
装修公司小活动策划方案 浏览:601
电子商务的基本框架结构是 浏览:629
药品终端营销方案 浏览:244
市场营销专业有资格证吗 浏览:408
市场营销策划及其特点 浏览:382
中山市市场营销调研 浏览:791