導航:首頁 > 營銷推廣 > 神經網路模型推廣

神經網路模型推廣

發布時間:2021-01-09 21:59:02

① 神經網路BP模型

一、BP模型概述

誤差逆傳播(Error Back-Propagation)神經網路模型簡稱為BP(Back-Propagation)網路模型。

Pall Werbas博士於1974年在他的博士論文中提出了誤差逆傳播學習演算法。完整提出並被廣泛接受誤差逆傳播學習演算法的是以Rumelhart和McCelland為首的科學家小組。他們在1986年出版「Parallel Distributed Processing,Explorations in the Microstructure of Cognition」(《並行分布信息處理》)一書中,對誤差逆傳播學習演算法進行了詳盡的分析與介紹,並對這一演算法的潛在能力進行了深入探討。

BP網路是一種具有3層或3層以上的階層型神經網路。上、下層之間各神經元實現全連接,即下層的每一個神經元與上層的每一個神經元都實現權連接,而每一層各神經元之間無連接。網路按有教師示教的方式進行學習,當一對學習模式提供給網路後,神經元的激活值從輸入層經各隱含層向輸出層傳播,在輸出層的各神經元獲得網路的輸入響應。在這之後,按減小期望輸出與實際輸出的誤差的方向,從輸入層經各隱含層逐層修正各連接權,最後回到輸入層,故得名「誤差逆傳播學習演算法」。隨著這種誤差逆傳播修正的不斷進行,網路對輸入模式響應的正確率也不斷提高。

BP網路主要應用於以下幾個方面:

1)函數逼近:用輸入模式與相應的期望輸出模式學習一個網路逼近一個函數;

2)模式識別:用一個特定的期望輸出模式將它與輸入模式聯系起來;

3)分類:把輸入模式以所定義的合適方式進行分類;

4)數據壓縮:減少輸出矢量的維數以便於傳輸或存儲。

在人工神經網路的實際應用中,80%~90%的人工神經網路模型採用BP網路或它的變化形式,它也是前向網路的核心部分,體現了人工神經網路最精華的部分。

二、BP模型原理

下面以三層BP網路為例,說明學習和應用的原理。

1.數據定義

P對學習模式(xp,dp),p=1,2,…,P;

輸入模式矩陣X[N][P]=(x1,x2,…,xP);

目標模式矩陣d[M][P]=(d1,d2,…,dP)。

三層BP網路結構

輸入層神經元節點數S0=N,i=1,2,…,S0;

隱含層神經元節點數S1,j=1,2,…,S1;

神經元激活函數f1[S1];

權值矩陣W1[S1][S0];

偏差向量b1[S1]。

輸出層神經元節點數S2=M,k=1,2,…,S2;

神經元激活函數f2[S2];

權值矩陣W2[S2][S1];

偏差向量b2[S2]。

學習參數

目標誤差ϵ;

初始權更新值Δ0

最大權更新值Δmax

權更新值增大倍數η+

權更新值減小倍數η-

2.誤差函數定義

對第p個輸入模式的誤差的計算公式為

中國礦產資源評價新技術與評價新模型

y2kp為BP網的計算輸出。

3.BP網路學習公式推導

BP網路學習公式推導的指導思想是,對網路的權值W、偏差b修正,使誤差函數沿負梯度方向下降,直到網路輸出誤差精度達到目標精度要求,學習結束。

各層輸出計算公式

輸入層

y0i=xi,i=1,2,…,S0;

隱含層

中國礦產資源評價新技術與評價新模型

y1j=f1(z1j),

j=1,2,…,S1;

輸出層

中國礦產資源評價新技術與評價新模型

y2k=f2(z2k),

k=1,2,…,S2。

輸出節點的誤差公式

中國礦產資源評價新技術與評價新模型

對輸出層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2m的函數,但只有一個y2k與wkj有關,各y2m間相互獨立。

其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設輸出層節點誤差為

δ2k=(dk-y2k)·f2′(z2k),

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

對隱含層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2k的函數,針對某一個w1ji,對應一個y1j,它與所有的y2k有關。因此,上式只存在對k的求和,其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設隱含層節點誤差為

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

4.採用彈性BP演算法(RPROP)計算權值W、偏差b的修正值ΔW,Δb

1993年德國 Martin Riedmiller和Heinrich Braun 在他們的論文「A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm」中,提出Resilient Backpropagation演算法——彈性BP演算法(RPROP)。這種方法試圖消除梯度的大小對權步的有害影響,因此,只有梯度的符號被認為表示權更新的方向。

權改變的大小僅僅由權專門的「更新值」

確定

中國礦產資源評價新技術與評價新模型

其中

表示在模式集的所有模式(批學習)上求和的梯度信息,(t)表示t時刻或第t次學習。

權更新遵循規則:如果導數是正(增加誤差),這個權由它的更新值減少。如果導數是負,更新值增加。

中國礦產資源評價新技術與評價新模型

RPROP演算法是根據局部梯度信息實現權步的直接修改。對於每個權,我們引入它的

各自的更新值

,它獨自確定權更新值的大小。這是基於符號相關的自適應過程,它基

於在誤差函數E上的局部梯度信息,按照以下的學習規則更新

中國礦產資源評價新技術與評價新模型

其中0<η-<1<η+

在每個時刻,如果目標函數的梯度改變它的符號,它表示最後的更新太大,更新值

應由權更新值減小倍數因子η-得到減少;如果目標函數的梯度保持它的符號,更新值應由權更新值增大倍數因子η+得到增大。

為了減少自由地可調參數的數目,增大倍數因子η+和減小倍數因子η被設置到固定值

η+=1.2,

η-=0.5,

這兩個值在大量的實踐中得到了很好的效果。

RPROP演算法採用了兩個參數:初始權更新值Δ0和最大權更新值Δmax

當學習開始時,所有的更新值被設置為初始值Δ0,因為它直接確定了前面權步的大小,它應該按照權自身的初值進行選擇,例如,Δ0=0.1(默認設置)。

為了使權不至於變得太大,設置最大權更新值限制Δmax,默認上界設置為

Δmax=50.0。

在很多實驗中,發現通過設置最大權更新值Δmax到相當小的值,例如

Δmax=1.0。

我們可能達到誤差減小的平滑性能。

5.計算修正權值W、偏差b

第t次學習,權值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t為學習次數。

6.BP網路學習成功結束條件每次學習累積誤差平方和

中國礦產資源評價新技術與評價新模型

每次學習平均誤差

中國礦產資源評價新技術與評價新模型

當平均誤差MSE<ε,BP網路學習成功結束。

7.BP網路應用預測

在應用BP網路時,提供網路輸入給輸入層,應用給定的BP網路及BP網路學習得到的權值W、偏差b,網路輸入經過從輸入層經各隱含層向輸出層的「順傳播」過程,計算出BP網的預測輸出。

8.神經元激活函數f

線性函數

f(x)=x,

f′(x)=1,

f(x)的輸入范圍(-∞,+∞),輸出范圍(-∞,+∞)。

一般用於輸出層,可使網路輸出任何值。

S型函數S(x)

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,

]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(0,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

在用於模式識別時,可用於輸出層,產生逼近於0或1的二值輸出。

雙曲正切S型函數

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,1]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(-1,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

階梯函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

f′(x)=0。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{-1,1}。

f′(x)=0。

斜坡函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[0,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[-1,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

三、總體演算法

1.三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b初始化總體演算法

(1)輸入參數X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)計算輸入模式X[N][P]各個變數的最大值,最小值矩陣 Xmax[N],Xmin[N];

(3)隱含層的權值W1,偏差b1初始化。

情形1:隱含層激活函數f( )都是雙曲正切S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9))輸出W1[S1][S0],b1[S1]。

情形2:隱含層激活函數f( )都是S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag;

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

情形3:隱含層激活函數f( )為其他函數的情形

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

(4)輸出層的權值W2,偏差b2初始化

1)產生[-1,1]之間均勻分布的S2×S1維隨機數矩陣W2[S2][S1];

2)產生[-1,1]之間均勻分布的S2×1維隨機數矩陣b2[S2];

3)輸出W2[S2][S1],b2[S2]。

2.應用彈性BP演算法(RPROP)學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b總體演算法

函數:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)輸入參數

P對模式(xp,dp),p=1,2,…,P;

三層BP網路結構;

學習參數。

(2)學習初始化

1)

2)各層W,b的梯度值

初始化為零矩陣。

(3)由輸入模式X求第一次學習各層輸出y0,y1,y2及第一次學習平均誤差MSE

(4)進入學習循環

epoch=1

(5)判斷每次學習誤差是否達到目標誤差要求

如果MSE<ϵ,

則,跳出epoch循環,

轉到(12)。

(6)保存第epoch-1次學習產生的各層W,b的梯度值

(7)求第epoch次學習各層W,b的梯度值

1)求各層誤差反向傳播值δ;

2)求第p次各層W,b的梯度值

3)求p=1,2,…,P次模式產生的W,b的梯度值

的累加。

(8)如果epoch=1,則將第epoch-1次學習的各層W,b的梯度值

設為第epoch次學習產生的各層W,b的梯度值

(9)求各層W,b的更新

1)求權更新值Δij更新;

2)求W,b的權更新值

3)求第epoch次學習修正後的各層W,b。

(10)用修正後各層W、b,由X求第epoch次學習各層輸出y0,y1,y2及第epoch次學習誤差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,轉到(5);

否則,轉到(12)。

(12)輸出處理

1)如果MSE<ε,

則學習達到目標誤差要求,輸出W1,b1,W2,b2

2)如果MSE≥ε,

則學習沒有達到目標誤差要求,再次學習。

(13)結束

3.三層BP網路(含輸入層,隱含層,輸出層)預測總體演算法

首先應用Train3lBP_RPROP( )學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b,然後應用三層BP網路(含輸入層,隱含層,輸出層)預測。

函數:Simu3lBP( )。

1)輸入參數:

P個需預測的輸入數據向量xp,p=1,2,…,P;

三層BP網路結構;

學習得到的各層權值W、偏差b。

2)計算P個需預測的輸入數據向量xp(p=1,2,…,P)的網路輸出 y2[S2][P],輸出預測結果y2[S2][P]。

四、總體演算法流程圖

BP網路總體演算法流程圖見附圖2。

五、數據流圖

BP網數據流圖見附圖1。

六、實例

實例一 全國銅礦化探異常數據BP 模型分類

1.全國銅礦化探異常數據准備

在全國銅礦化探數據上用穩健統計學方法選取銅異常下限值33.1,生成全國銅礦化探異常數據。

2.模型數據准備

根據全國銅礦化探異常數據,選取7類33個礦點的化探數據作為模型數據。這7類分別是岩漿岩型銅礦、斑岩型銅礦、矽卡岩型、海相火山型銅礦、陸相火山型銅礦、受變質型銅礦、海相沉積型銅礦,另添加了一類沒有銅異常的模型(表8-1)。

3.測試數據准備

全國化探數據作為測試數據集。

4.BP網路結構

隱層數2,輸入層到輸出層向量維數分別為14,9、5、1。學習率設置為0.9,系統誤差1e-5。沒有動量項。

表8-1 模型數據表

續表

5.計算結果圖

如圖8-2、圖8-3。

圖8-2

圖8-3 全國銅礦礦床類型BP模型分類示意圖

實例二 全國金礦礦石量品位數據BP 模型分類

1.模型數據准備

根據全國金礦儲量品位數據,選取4類34個礦床數據作為模型數據,這4類分別是綠岩型金礦、與中酸性浸入岩有關的熱液型金礦、微細浸染型型金礦、火山熱液型金礦(表8-2)。

2.測試數據准備

模型樣本點和部分金礦點金屬量、礦石量、品位數據作為測試數據集。

3.BP網路結構

輸入層為三維,隱層1層,隱層為三維,輸出層為四維,學習率設置為0.8,系統誤差1e-4,迭代次數5000。

表8-2 模型數據

4.計算結果

結果見表8-3、8-4。

表8-3 訓練學習結果

表8-4 預測結果(部分)

續表

② 什麼叫神經網路模型

神經網路的基礎在於神經元。
神經元是以生物神經系統的神經細胞為基礎的生物模型。在人們對生物神經系統進行研究,以探討人工智慧的機制時,把神經元數學化,從而產生了神經元數學模型。
大量的形式相同的神經元連結在—起就組成了神經網路。神經網路是一個高度非線性動力學系統。雖然,每個神經元的結構和功能都不復雜,但是神經網路的動態行為則是十分復雜的;因此,用神經網路可以表達實際物理世界的各種現象。
神經網路模型是以神經元的數學模型為基礎來描述的。神經網路模型由網路拓撲.節點特點和學習規則來表示。神經網路對人們的巨大吸引力主要在下列幾點:
1.並行分布處理。
2.高度魯棒性和容錯能力。
3.分布存儲及學習能力。
4.能充分逼近復雜的非線性關系。
在控制領域的研究課題中,不確定性系統的控制問題長期以來都是控制理論研究的中心主題之一,但是這個問題一直沒有得到有效的解決。利用神經網路的學習能力,使它在對不確定性系統的控制過程中自動學習系統的特性,從而自動適應系統隨時間的特性變異,以求達到對系統的最優控制;顯然這是一種十分振奮人心的意向和方法。
人工神經網路的模型現在有數十種之多,應用較多的典型的神經網路模型包括BP網路、Hopfield網路、ART網路和Kohonen網路。

參考:http://ke..com/view/3406239.html?wtp=tt

③ 時間序列模型和神經網路模型有何區別

時間序列模型是指採用某種演算法(可以是神經網路、ARMA等)模擬歷史數據,找出其中的變化規律,
神經網路模型是一種演算法,可以用於分類、聚類、預測等等不用領域;

兩者一個是問題模型,一個是演算法模型

④ 如下圖的神經網路模型圖是通過什麼軟體畫的

可以用viznet

⑤ 神經網路Hopfield模型

一、Hopfield模型概述

1982年,美國加州工學院J.Hopfield發表一篇對人工神經網路研究頗有影響的論文。他提出了一種具有相互連接的反饋型人工神經網路模型——Hopfield人工神經網路。

Hopfield人工神經網路是一種反饋網路(Recurrent Network),又稱自聯想記憶網路。其目的是為了設計一個網路,存儲一組平衡點,使得當給網路一組初始值時,網路通過自行運行而最終收斂到所存儲的某個平衡點上。

Hopfield網路是單層對稱全反饋網路,根據其激活函數的選取不同,可分為離散型Hopfield網路(Discrete Hopfield Neural Network,簡稱 DHNN)和連續型 Hopfield 網路(Continue Hopfield Neural Network,簡稱CHNN)。離散型Hopfield網路的激活函數為二值型階躍函數,主要用於聯想記憶、模式分類、模式識別。這個軟體為離散型Hopfield網路的設計、應用。

二、Hopfield模型原理

離散型Hopfield網路的設計目的是使任意輸入矢量經過網路循環最終收斂到網路所記憶的某個樣本上。

正交化的權值設計

這一方法的基本思想和出發點是為了滿足下面4個要求:

1)保證系統在非同步工作時的穩定性,即它的權值是對稱的,滿足

wij=wji,i,j=1,2…,N;

2)保證所有要求記憶的穩定平衡點都能收斂到自己;

3)使偽穩定點的數目盡可能地少;

4)使穩定點的吸引力盡可能地大。

正交化權值的計算公式推導如下:

1)已知有P個需要存儲的穩定平衡點x1,x2…,xP-1,xP,xp∈RN,計算N×(P-1)階矩陣A∈RN×(P-1)

A=(x1-xPx2-xP…xP-1-xP)T

2)對A做奇異值分解

A=USVT

U=(u1u2…uN),

V=(υ1υ2…υP-1),

中國礦產資源評價新技術與評價新模型

Σ=diαg(λ1,λ2,…,λK),O為零矩陣。

K維空間為N維空間的子空間,它由K個獨立的基組成:

K=rαnk(A),

設{u1u2…uK}為A的正交基,而{uK+1uK+2…uN}為N維空間的補充正交基。下面利用U矩陣來設計權值。

3)構造

中國礦產資源評價新技術與評價新模型

總的連接權矩陣為:

Wt=Wp-T·Wm

其中,T為大於-1的參數,預設值為10。

Wp和Wm均滿足對稱條件,即

(wp)ij=(wp)ji

(wm)ij=(wm)ji

因而Wt中分量也滿足對稱條件。這就保證了系統在非同步時能夠收斂並且不會出現極限環。

4)網路的偏差構造為

bt=xP-Wt·xP

下面推導記憶樣本能夠收斂到自己的有效性。

(1)對於輸入樣本中的任意目標矢量xp,p=1,2,…,P,因為(xp-xP)是A中的一個矢量,它屬於A的秩所定義的K個基空間的矢量,所以必存在系數α1,α2,…,αK,使

xp-xP1u12u2+…+αKuK

xp1u12u2+…+αKuK+xP

對於U中任意一個ui,有

中國礦產資源評價新技術與評價新模型

由正交性質可知,上式中

當i=j,

當i≠j,

對於輸入模式xi,其網路輸出為

yi=sgn(Wtxi+bt)

=sgn(Wpxi-T·Wmxi+xP-WpxP+T·WmxP)

=sgn[Wp(xi-xP)-T·Wm(xi-xP)+xP]

=sgn[(Wp-T·Wm)(xi-xP)+xP]

=sgn[Wt(xi-xP)+xP]

=sgn[(xi-xP)+xP]

=xi

(2)對於輸入模式xP,其網路輸出為

yP=sgn(WtxP+bt)

=sgn(WtxP+xP-WtxP)

=sgn(xP)

=xP

(3)如果輸入一個不是記憶樣本的x,網路輸出為

y=sgn(Wtx+bt)

=sgn[(Wp-T·Wm)(x-xP)+xP]

=sgn[Wt(x-xP)+xP]。

因為x不是已學習過的記憶樣本,x-xP不是A中的矢量,則必然有

Wt(x-xP)≠x-xP

並且再設計過程中可以通過調節Wt=Wp-T·Wm中的參數T的大小來控制(x-xP)與xP的符號,以保證輸入矢量x與記憶樣本之間存在足夠的大小余額,從而使sgn(Wtx+bt)≠x,使x不能收斂到自身。

用輸入模式給出一組目標平衡點,函數HopfieldDesign( )可以設計出 Hopfield 網路的權值和偏差,保證網路對給定的目標矢量能收斂到穩定的平衡點。

設計好網路後,可以應用函數HopfieldSimu( ),對輸入矢量進行分類,這些輸入矢量將趨近目標平衡點,最終找到他們的目標矢量,作為對輸入矢量進行分類。

三、總體演算法

1.Hopfield網路權值W[N][N]、偏差b[N]設計總體演算法

應用正交化權值設計方法,設計Hopfield網路;

根據給定的目標矢量設計產生權值W[N][N],偏差b[N];

使Hopfield網路的穩定輸出矢量與給定的目標矢量一致。

1)輸入P個輸入模式X=(x[1],x[2],…,x[P-1],x[P])

輸入參數,包括T、h;

2)由X[N][P]構造A[N][P-1]=(x[1]-x[P],x[2]-x[P],…,x[P-1]-x[P]);

3)對A[N][P-1]作奇異值分解A=USVT

4)求A[N][P-1]的秩rank;

5)由U=(u[1],u[2],…,u[K])構造Wp[N][N];

6)由U=(u[K+1],…,u[N])構造Wm[N][N];

7)構造Wt[N][N]=Wp[N][N]-T*Wm[N][N];

8)構造bt[N]=X[N][P]-Wt[N][N]*X[N][P];

9)構造W[N][N](9~13),

構造W1[N][N]=h*Wt[N][N];

10)求W1[N][N]的特徵值矩陣Val[N][N](對角線元素為特徵值,其餘為0),特徵向量矩陣Vec[N][N];

11)求Eval[N][N]=diag{exp[diag(Val)]}[N][N];

12)求Vec[N][N]的逆Invec[N][N];

13)構造W[N][N]=Vec[N][N]*Eval[N][N]*Invec[N][N];

14)構造b[N],(14~15),

C1=exp(h)-1,

C2=-(exp(-T*h)-1)/T;

15)構造

中國礦產資源評價新技術與評價新模型

Uˊ——U的轉置;

16)輸出W[N][N],b[N];

17)結束。

2.Hopfield網路預測應用總體演算法

Hopfield網路由一層N個斜坡函數神經元組成。

應用正交化權值設計方法,設計Hopfield網路。

根據給定的目標矢量設計產生權值W[N][N],偏差b[N]。

初始輸出為X[N][P],

計算X[N][P]=f(W[N][N]*X[N][P]+b[N]),

進行T次迭代,

返回最終輸出X[N][P],可以看作初始輸出的分類。

3.斜坡函數

中國礦產資源評價新技術與評價新模型

輸出范圍[-1,1]。

四、數據流圖

Hopfield網數據流圖見附圖3。

五、調用函數說明

1.一般實矩陣奇異值分解

(1)功能

用豪斯荷爾德(Householder)變換及變形QR演算法對一般實矩陣進行奇異值分解。

(2)方法說明

設A為m×n的實矩陣,則存在一個m×m的列正交矩陣U和n×n的列正交矩陣V,使

中國礦產資源評價新技術與評價新模型

成立。其中

Σ=diag(σ0,σ1,…σp)p⩽min(m,n)-1,

且σ0≥σ1≥…≥σp>0,

上式稱為實矩陣A的奇異值分解式,σi(i=0,1,…,p)稱為A的奇異值。

奇異值分解分兩大步:

第一步:用豪斯荷爾德變換將A約化為雙對角線矩陣。即

中國礦產資源評價新技術與評價新模型

其中

中國礦產資源評價新技術與評價新模型

中的每一個變換Uj(j=0,1,…,k-1)將A中的第j列主對角線以下的元素變為0,而

中的每一個變換Vj(j=0,1,…,l-1)將A中的第j行主對角線緊鄰的右次對角線元素右邊的元素變為0。]]

j具有如下形式:

中國礦產資源評價新技術與評價新模型

其中ρ為一個比例因子,以避免計算過程中的溢出現象與誤差的累積,Vj是一個列向量。即

Vj=(υ0,υ1,…,υn-1),

中國礦產資源評價新技術與評價新模型

其中

中國礦產資源評價新技術與評價新模型

第二步:用變形的QR演算法進行迭代,計算所有的奇異值。即:用一系列的平面旋轉變換對雙對角線矩陣B逐步變換成對角矩陣。

在每一次的迭代中,用變換

中國礦產資源評價新技術與評價新模型

其中變換

將B中第j列主對角線下的一個非0元素變為0,同時在第j行的次對角線元素的右邊出現一個非0元素;而變換Vj,j+1將第j-1行的次對角線元素右邊的一個0元素變為0,同時在第j列的主對角線元素的下方出現一個非0元素。由此可知,經過一次迭代(j=0,1,…,p-1)後,B′仍為雙對角線矩陣。但隨著迭代的進行。最後收斂為對角矩陣,其對角線上的元素為奇異值。

在每次迭代時,經過初始化變換V01後,將在第0列的主對角線下方出現一個非0元素。在變換V01中,選擇位移植u的計算公式如下:

中國礦產資源評價新技術與評價新模型

最後還需要對奇異值按非遞增次序進行排列。

在上述變換過程中,若對於某個次對角線元素ej滿足

|ej|⩽ε(|sj+1|+|sj|)

則可以認為ej為0。

若對角線元素sj滿足

|sj|⩽ε(|ej-1|+|ej|)

則可以認為sj為0(即為0奇異值)。其中ε為給定的精度要求。

(3)調用說明

int bmuav(double*a,int m,int n,double*u,double*v,double eps,int ka),

本函數返回一個整型標志值,若返回的標志值小於0,則表示出現了迭代60次還未求得某個奇異值的情況。此時,矩陣的分解式為UAVT;若返回的標志值大於0,則表示正常返回。

形參說明:

a——指向雙精度實型數組的指針,體積為m×n。存放m×n的實矩陣A;返回時,其對角線給出奇異值(以非遞增次序排列),其餘元素為0;

m——整型變數,實矩陣A的行數;

n——整型變數,實矩陣A的列數;

u——指向雙精度實型數組的指針,體積為m×m。返回時存放左奇異向量U;

υ——指向雙精度實型數組的指針,體積為n×n。返回時存放右奇異向量VT

esp——雙精度實型變數,給定的精度要求;

ka——整型變數,其值為max(m,n)+1。

2.求實對稱矩陣特徵值和特徵向量的雅可比過關法

(1)功能

用雅可比(Jacobi)方法求實對稱矩陣的全部特徵值與相應的特徵向量。

(2)方法說明

雅可比方法的基本思想如下。

設n階矩陣A為對稱矩陣。在n階對稱矩陣A的非對角線元素中選取一個絕對值最大的元素,設為apq。利用平面旋轉變換矩陣R0(p,q,θ)對A進行正交相似變換:

A1=R0(p,q,θ)TA,

其中R0(p,q,θ)的元素為

rpp=cosθ,rqq=cosθ,rpq=sinθ,

rqp=sinθ,rij=0,i,j≠p,q。

如果按下式確定角度θ,

中國礦產資源評價新技術與評價新模型

則對稱矩陣A經上述變換後,其非對角線元素的平方和將減少

,對角線元素的平方和增加

,而矩陣中所有元素的平方和保持不變。由此可知,對稱矩陣A每次經過一次變換,其非對角線元素的平方和「向零接近一步」。因此,只要反復進行上述變換,就可以逐步將矩陣A變為對角矩陣。對角矩陣中對角線上的元素λ0,λ1,…,λn-1即為特徵值,而每一步中的平面旋轉矩陣的乘積的第i列(i=0,1,…,n-1)即為與λi相應的特徵向量。

綜上所述,用雅可比方法求n階對稱矩陣A的特徵值及相應特徵向量的步驟如下:

1)令S=In(In為單位矩陣);

2)在A中選取非對角線元素中絕對值最大者,設為apq

3)若|apq|<ε,則迭代過程結束。此時對角線元素aii(i=0,1,…,n-1)即為特徵值λi,矩陣S的第i列為與λi相應的特徵向量。否則,繼續下一步;

4)計算平面旋轉矩陣的元素及其變換後的矩陣A1的元素。其計算公式如下

中國礦產資源評價新技術與評價新模型

5)S=S·R(p,q,θ),轉(2)。

在選取非對角線上的絕對值最大的元素時用如下方法:

首先計算實對稱矩陣A的非對角線元素的平方和的平方根

中國礦產資源評價新技術與評價新模型

然後設置關口υ10/n,在非對角線元素中按行掃描選取第一個絕對值大於或等於υ1的元素αpq進行平面旋轉變換,直到所有非對角線元素的絕對值均小於υ1為止。再設關口υ21/n,重復這個過程。以此類推,這個過程一直作用到對於某個υk<ε為止。

(3)調用說明

void cjcbj(double*a,int n,double*v,double eps)。

形參說明:

a——指向雙精度實型數組的指針,體積為n×n,存放n階實對稱矩陣A;返回時,其對角線存放n個特徵值;

n——整型變數,實矩陣A的階數;

υ——指向雙精度實型數組的指針,體積為n×n,返回特徵向量,其中第i列為與λi(即返回的αii,i=0,1,……,n-1)對應的特徵向量;

esp——雙精度實型變數。給定的精度要求。

3.矩陣求逆

(1)功能

用全選主元高斯-約當(Gauss-Jordan)消去法求n階實矩陣A的逆矩陣。

(2)方法說明

高斯-約當法(全選主元)求逆的步驟如下:

首先,對於k從0到n-1做如下幾步:

1)從第k行、第k列開始的右下角子陣中選取絕對值最大的元素,並記住此元素所在的行號和列號,再通過行交換和列交換將它交換到主元素位置上,這一步稱為全選主元;

2)

3)

,i,j=0,1,…,n-1(i,j≠k);

4)αij-

,i,j=0,1,…,n-1(i,j≠k);

5)-

,i,j=0,1,…,n-1(i≠k);

最後,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復原則如下:在全選主元過程中,先交換的行、列後進行恢復;原來的行(列)交換用列(行)交換來恢復。

圖8-4 東昆侖—柴北緣地區基於HOPFIELD模型的銅礦分類結果圖

(3)調用說明

int brinv(double*a,int n)。

本函數返回一個整型標志位。若返回的標志位為0,則表示矩陣A奇異,還輸出信息「err**not inv」;若返回的標志位不為0,則表示正常返回。

形參說明:

a——指向雙精度實型數組的指針,體積為n×n。存放原矩陣A;返回時,存放其逆矩陣A-1

n——整型變數,矩陣的階數。

六、實例

實例:柴北緣—東昆侖地區銅礦分類預測。

選取8種因素,分別是重砂異常存在標志、水化異常存在標志、化探異常峰值、地質圖熵值、Ms存在標志、Gs存在標志、Shdadlie到區的距離、構造線線密度。

構置原始變數,並根據原始數據構造預測模型。

HOPFIELD模型參數設置:訓練模式維數8,預測樣本個數774,參數個數8,迭代次數330。

結果分44類(圖8-4,表8-5)。

表8-5 原始數據表及分類結果(部分)

續表

⑥ 神經網路模型的數學模型

從神經元的特性和功能可以知道,神經元是一個多輸入單輸出的信息處理單元,而且,它對信息的處理是非線性的。根據神經元的特性和功能,可以把神經元抽象為一個簡單的數學模型。工程上用的人工神經元模型如圖1-4所示。
圖1-4 神經元的數學模型
在圖1-4中,X1,X2,……,Xn是神經元的輸入,即是來自前級n個神經元的軸突的信息A,Σ是i神經元的閾值;Wi1,Wi2……,Win分別是i神經元對X1,X2,……,Xn的權系數,也即突觸的傳遞效率;Yi是i神經元的輸出;f[·]是激發函數,它決定i神經元受到輸人X1,X2,……,Xn的共同刺激達到閥值時以何種方式輸出。
從圖1-4的神經元模型,可以得到神經元的數學模型表達式:
(1-1)
圖1-5.典型激發函數
對於激發函數f[·]有多種形式,其中最常見的有階躍型、線性型和S型三種形式,這三種形式如圖1—5所示。
為了表達方便;令:
(1-2)
則式(1-1)可寫成下式:
Yi=F[Ui] ; (1-3)
顯然,對於階躍型激發涵數有:
(1-4)
對於線性型激發函數,有:
f(Ui)=Ku; (1-5)
對於S型激發函數,有:
(1-6)
對於階躍型激發函數,它的輸出是電位脈沖,故而這種激發函數的神經元稱離散輸出模型。
對於線性激發函數,它的輸出是隨輸入的激發總量成正比的;故這種神經元稱線性連續型模型。
對於用s型激發函數,它的輸出是非線性的;故這種神經元稱非線性連續型模型。
上面所敘述的是最廣泛應用而且人們最熟悉的神經元數學模型;也是歷史最長的神經元模型。近若干年來,隨著神經網路理論的發展,出現了不少新穎的神經元數學模型,這些模型包括邏輯神經元模型,模糊神經元模型等,並且漸漸也受到人們的關注和重視。 能對商品價格、股票價格和企業的可信度等進行短期預測
另外,在數據挖掘、電力系統、交通、軍事、礦業、農業和氣象等方面亦有應用。

⑦ 神經網路模型

你自行搭建的神經抄網路模型,權值和閾值仍然是要通過訓練得到的。初始化後,將BP演算法加到這個模型上,不斷調整權值。可以先用神經網路工具箱訓練好一個網路,再將權值和閾值導出。

net.IW{1,1}=W1;
net.LW{2,1}=W2;
net.b{1}=B1;
net.b{2}=B2;

注意要反過來,如果是導出的話。

⑧ 神經網路優缺點,

優點:

(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。

自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

缺點:

(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。

(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。

(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。

(4)理論和學習演算法還有待於進一步完善和提高。

(8)神經網路模型推廣擴展閱讀:

神經網路發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。

人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。

將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。

神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。

由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。

參考資料:網路-人工神經網路

⑨ 神經網路模型的介紹


神經網路(Neural Networks,NN)是由大量的、簡單的處理單元(稱為神經元)廣泛地互相連接而形成的復雜網路系統,它反映了人腦功能的許多基本特徵,是一個高度復雜的非線性動力學習系統。神經網路具有大規模並行、分布式存儲和處理、自組織、自適應和自學能力,特別適合處理需要同時考慮許多因素和條件的、不精確和模糊的信息處理問題。神經網路的發展與神經科學、數理科學、認知科學、計算機科學、人工智慧、信息科學、控制論、機器人學、微電子學、心理學、光計算、分子生物學等有關,是一門新興的邊緣交叉學科。
神經網路的基礎在於神經元。
神經元是以生物神經系統的神經細胞為基礎的生物模型。在人們對生物神經系統進行研究,以探討人工智慧的機制時,把神經元數學化,從而產生了神經元數學模型。
大量的形式相同的神經元連結在—起就組成了神經網路。神經網路是一個高度非線性動力學系統。雖然,每個神經元的結構和功能都不復雜,但是神經網路的動態行為則是十分復雜的;因此,用神經網路可以表達實際物理世界的各種現象。
神經網路模型是以神經元的數學模型為基礎來描述的。人工神經網路(ArtificialNuearlNewtokr)s,是對人類大腦系統的一階特性的一種描。簡單地講,它是一個數學模型。神經網路模型由網路拓撲.節點特點和學習規則來表示。神經網路對人們的巨大吸引力主要在下列幾點:
1.並行分布處理。
2.高度魯棒性和容錯能力。
3.分布存儲及學習能力。
4.能充分逼近復雜的非線性關系。
在控制領域的研究課題中,不確定性系統的控制問題長期以來都是控制理論研究的中心主題之一,但是這個問題一直沒有得到有效的解決。利用神經網路的學習能力,使它在對不確定性系統的控制過程中自動學習系統的特性,從而自動適應系統隨時間的特性變異,以求達到對系統的最優控制;顯然這是一種十分振奮人心的意向和方法。
人工神經網路的模型現在有數十種之多,應用較多的典型的神經網路模型包括BP神經網路、Hopfield網路、ART網路和Kohonen網路。 學習是神經網路一種最重要也最令人注目的特點。在神經網路的發展進程中,學習演算法的研究有著十分重要的地位。目前,人們所提出的神經網路模型都是和學習演算法相應的。所以,有時人們並不去祈求對模型和演算法進行嚴格的定義或區分。有的模型可以有多種演算法。而有的演算法可能可用於多種模型。在神經網路中,對外部環境提供的模式樣本進行學習訓練,並能存儲這種模式,則稱為感知器;對外部環境有適應能力,能自動提取外部環境變化特徵,則稱為認知器。神經網路在學習中,一般分為有教師和無教師學習兩種。感知器採用有教師信號進行學習,而認知器則採用無教師信號學習的。在主要神經網路如Bp網路,Hopfield網路,ART絡和Kohonen網路中;Bp網路和Hopfield網路是需要教師信號才能進行學習的;而ART網路和Khonone網路則無需教師信號就可以學習49[]。所謂教師信號,就是在神經網路學習中由外部提供的模式樣本信號。

⑩ 如何建立bp神經網路預測 模型

建立BP神經網路預測 模型,可按下列步驟進行:

1、提供原始數據

2、訓回練數據預測數據提答取及歸一化

3、BP網路訓練

4、BP網路預測

5、結果分析

現用一個實際的例子,來預測2015年和2016年某地區的人口數。

已知2009年——2014年某地區人口數分別為3583、4150、5062、4628、5270、5340萬人

執行BP_main程序,得到

[ 2015, 5128.631704710423946380615234375]

[ 2016, 5100.5797325642779469490051269531]

代碼及圖形如下。

閱讀全文

與神經網路模型推廣相關的資料

熱點內容
師資培訓服務方案 瀏覽:912
百度競價推廣計劃方案 瀏覽:850
2015年度公司培訓計劃方案整理版 瀏覽:255
深圳披披季電子商務有限公司 瀏覽:253
市場營銷形成性考核冊答案 瀏覽:466
泉州市聚傑電子商務有限公司 瀏覽:276
美國移動電子商務發展 瀏覽:841
設備培訓組織方案 瀏覽:121
建設工程培訓服務方案 瀏覽:567
2017年培訓計劃方案 瀏覽:608
華晨消防電子商務平台 瀏覽:839
市場營銷學吳建安期末考點 瀏覽:869
開展科技輔導員培訓實施方案 瀏覽:331
有關電子商務的填空題 瀏覽:601
網路營銷的外文文獻及翻譯 瀏覽:117
毛筆書法教師培訓活動方案 瀏覽:939
規章制度培訓方案 瀏覽:619
食人員培訓實施方案 瀏覽:21
幼兒園游戲活動園本培訓方案 瀏覽:850
中心校校本培訓方案 瀏覽:165