導航:首頁 > 營銷策劃 > 基於用戶行為分析的精確營銷系統設計與實現

基於用戶行為分析的精確營銷系統設計與實現

發布時間:2021-04-07 09:41:10

⑴ 什麼是用戶行為分析怎麼做用戶行為分析

第一個問題,什麼是用戶行為分析:
過去的用戶行為分析普遍的問題是:分析不聚焦、採集不全面、開發周期長、完全依靠人工埋點、事後分析、維度單一、指標傳統。

所以當下可以把用戶行為分析定義為:基於用戶生命周期管理模型、全面採集所有數據、事中分析、提前預測、實時多維組合、科學維度劃分、自定義指標的分析。
第二個問題:怎麼做用戶行為分析
你提出這個問題,證明你可能暫時沒有數據分析團隊,或者數據分析團隊尚不成熟和完善,所以需要開展數據分析工作的話建議是藉助第三方的平台。
這一塊業務目前國內已經相對成熟,也有很多不錯的合作夥伴可以選擇了,矽谷的明星公司可以選擇Google Analytics或者Mixpanel等,不過我最推薦的還是國內的數極客。
具體如何開展,我個人的建議是:
選擇採用AARRR模型的平台,通過對用戶全程行為的跟蹤,讓我們在經營中運營中,擁有Acquisition(獲客)、Activation(激活與活躍)、Retention(留存)、Revenue(收入)、Refer(二次傳播) 全程數據分析功能。

⑵ 基於Web的客戶關系管理系統設計與實現

WISSIP平台在線CRM為企業提供客戶關系管理解決方案,包括銷售管理,市場營銷管理,售後服務管理,進銷存管理。 銷售自動化,市場營銷自動化,客戶服務與支持,用於第三方集成的開發人員API,進銷存服務與支持,CRM集成Email功能,CRM分析,工作流管理(工作流管理可使您的銷售、市場和客戶服務支持實現自動化。您還可根據預定的一組規則將記錄自動分配給用戶,或從一個用戶轉換到另一個用戶。例如:將從網站搜集的華北客戶的信息自動分配給華北銷售經理進行跟蹤。)基於角色的許可權設置(企業級許可權設置使您在處理CRM數據和模塊時可以控制各用戶的使用許可權。基於角色的許可權設置還包括用戶崗位、組、角色、數據共享規則、欄位級安全控制,實現企業不同人員、部門之間的共享。)在線CRM軟體免費體驗< http://www.wissip.com/SoftShopFuntype-4-1>,樓主可以參考下。意見僅供參考,祝好運!

⑶ 如何構建一套完善的用戶畫像體系,實現精準化營銷

為什麼需要用戶畫像 用戶畫像的核心工作是為用戶打標簽,打標簽的重要目的之一是為了讓人能夠理解並且方便計算機處理,如,可以做分類統計:喜歡紅酒的用戶有多少?喜歡紅酒的人群中,男、女比例是多少? 也可以做數據挖掘工作:利用關聯規則計算,喜歡紅酒的人通常喜歡什麼運動品牌?利用聚類演算法分析,喜歡紅酒的人年齡段分布情況? 大數據處理,離不開計算機的運算,標簽提供了一種便捷的方式,使得計算機能夠程序化處理與人相關的信息,甚至通過演算法、模型能夠「理解」 人。當計算機具備這樣的能力後,無論是搜索引擎、推薦引擎、廣告投放等各種應用領域,都將能進一步提升精準度,提高信息獲取的效率。 三、如何構建用戶畫像 一個標簽通常是人為規定的高度精煉的特徵標識,如年齡段標簽:25~35歲,地域標簽:北京,標簽呈現出兩個重要特徵:語義化,人能很方便地理解每個標簽含義。這也使得用戶畫像模型具備實際意義。能夠較好的滿足業務需求。如,判斷用戶偏好。短文本,每個標簽通常只表示一種含義,標簽本身無需再做過多文本分析等預處理工作,這為利用機器提取標准化信息提供了便利。 人制定標簽規則,並能夠通過標簽快速讀出其中的信息,機器方便做標簽提取、聚合分析。所以,用戶畫像,即:用戶標簽,向我們展示了一種樸素、簡潔的方法用於描述用戶信息。 3.1 數據源分析 構建用戶畫像是為了還原用戶信息,因此數據來源於:所有用戶相關的數據。 對於用戶相關數據的分類,引入一種重要的分類思想:封閉性的分類方式。如,世界上分為兩種人,一種是學英語的人,一種是不學英語的人;客戶分三類,高價值客戶,中價值客戶,低價值客戶;產品生命周期分為,投入期、成長期、成熟期、衰退期…所有的子分類將構成了類目空間的全部集合。 這樣的分類方式,有助於後續不斷枚舉並迭代補充遺漏的信息維度。不必擔心架構上對每一層分類沒有考慮完整,造成維度遺漏留下擴展性隱患。另外,不同的分類方式根據應用場景,業務需求的不同,也許各有道理,按需劃分即可。 本文將用戶數據劃分為靜態信息數據、動態信息數據兩大類。 靜態信息數據 用戶相對穩定的信息,如圖所示,主要包括人口屬性、商業屬性等方面數據。這類信息,自成標簽,如果企業有真實信息則無需過多建模預測,更多的是數據清洗工作,因此這方面信息的數據建模不是本篇文章重點。 動態信息數據 用戶不斷變化的行為信息,如果存在上帝,每一個人的行為都在時刻被上帝那雙無形的眼睛監控著,廣義上講,一個用戶打開網頁,買了一個杯子;與該用戶傍晚溜了趟狗,白天取了一次錢,打了一個哈欠等等一樣都是上帝眼中的用戶行為。當行為集中到互聯網,乃至電商,用戶行為就會聚焦很多,如上圖所示:瀏覽凡客首頁、瀏覽休閑鞋單品頁、搜索帆布鞋、發表關於鞋品質的微博、贊「雙十一大促給力」的微博消息。等等均可看作互聯網用戶行為。 本篇文章以互聯網電商用戶,為主要分析對象,暫不考慮線下用戶行為數據(分析方法雷同,只是數據獲取途徑,用戶識別方式有些差異)。 在互聯網上,用戶行為,可以看作用戶動態信息的唯一數據來源。如何對用戶行為數據構建數據模型,分析出用戶標簽,將是本文著重介紹的內容。 3.2 目標分析 用戶畫像的目標是通過分析用戶行為,最終為每個用戶打上標簽,以及該標簽的權重。如,紅酒 0.8、李寧 0.6。 標簽,表徵了內容,用戶對該內容有興趣、偏好、需求等等。 權重,表徵了指數,用戶的興趣、偏好指數,也可能表徵用戶的需求度,可以簡單的理解為可信度,概率。 3.3 數據建模方法 下面內容將詳細介紹,如何根據用戶行為,構建模型產出標簽、權重。一個事件模型包括:時間、地點、人物三個要素。每一次用戶行為本質上是一次隨機事件,可以詳細描述為:什麼用戶,在什麼時間,什麼地點,做了什麼事。 什麼用戶:關鍵在於對用戶的標識,用戶標識的目的是為了區分用戶、單點定位。

⑷ 用戶行為分析系統建立所需步驟和所需軟體

Web日誌挖掘分析的方法

日誌文件的格式及其包含的信息
①2006-10-17 00:00:00②202.200.44.43 ③218.77.130.24 80 ④GET ⑤/favicon.ico
⑥Mozilla/5.0+(Windows;+U;+Windows+NT+5.1;+zh-CN;+rv:1.8.0.3)+Gecko/20060426
+Firefox/1.5.0.3。
①訪問時間;②用戶IP地址;③訪問的URL,埠;④請求方法(「GET」、「POST」等);
⑤訪問模式;⑥agent,即用戶使用的操作系統類型和瀏覽器軟體。

一、日誌的簡單分析
1、注意那些被頻繁訪問的資源
2、注意那些你網站上不存在資源的請求。常見的掃描式攻擊還包括傳遞惡意參數等:
3、觀察搜索引擎蜘蛛的來訪情況
4、觀察訪客行為
應敵之策:
1、封殺某個IP
2、封殺某個瀏覽器類型(Agent)
3、封殺某個來源(Referer)
4、防盜鏈
5、文件重命名
作用:
1.對訪問時間進行統計,可以得到伺服器在某些時間段的訪問情況。
2.對IP進行統計,可以得到用戶的分布情況。
3.對請求URL的統計,可以得到網站頁面關注情況。
4.對錯誤請求的統計,可以更正有問題的頁面。

二、Web挖掘
根據所挖掘的Web 數據的類型,可以將Web 數據挖掘分為以下三類:Web 內容挖掘(Web Content Mining)、Web 結構挖掘(Web Structure Mining)、Web 使用挖掘(Web Usage Mining)(也稱為Web日誌挖掘)。
①Web內容挖掘。Web內容挖掘是指從文檔的內容中提取知識。Web內容挖掘又分為文本挖掘和多媒體挖掘。目前多媒體數據的挖掘研究還處於探索階段,Web文本挖掘已經有了比較實用的功能。Web文本挖掘可以對Web上大量文檔集合的內容進行總結、分類、聚類、關聯分析,以及利用Web文檔進行趨勢預測等。Web文檔中的標記,例如<Title>和<Heading>等蘊含了額外的信息,可以利用這些信息來加強Web文本挖掘的作用。
②Web結構挖掘。Web結構挖掘是從Web的組織結構和鏈接關系中推導知識。它不僅僅局限於文檔之間的超鏈接結構,還包括文檔內部的結構。文檔中的URL目錄路徑的結構等。Web結構挖掘能夠利用網頁間的超鏈接信息對搜索引擎的檢索結果進行相關度排序,尋找個人主頁和相似網頁,提高Web搜索蜘蛛在網上的爬行效率,沿著超鏈接優先爬行。Web結構挖掘還可以用於對Web頁進行分類、預測用戶的Web鏈接使用及Web鏈接屬性的可視化。對各個商業搜索引擎索引用的頁數量進行統計分析等。
③Web使用記錄挖掘。Web使用記錄挖掘是指從Web的使用記錄中提取感興趣的模式,目前Web使用記錄挖掘方面的研究較多,WWW中的每個伺服器都保留了訪問日誌,記錄了關於用戶訪問和交互的信息,可以通過分析和研究Web日誌記錄中的規律,來識別網站的潛在用戶;可以用基於擴展有向樹模型來識別用戶瀏覽序列模式,從而進行Web日誌挖掘;可以根據用戶訪問的Web記錄挖掘用戶的興趣關聯規則,存放在興趣關聯知識庫中,作為對用戶行為進行預測的依據,從而為用戶預取一些Web頁面,加快用戶獲取頁面的速度,分析這些數據還可以幫助理解用戶的行為,從而改進站點的結構,或為用戶提供個性化的服務。
通過對Web伺服器日誌中大量的用戶訪問記錄深入分析,發現用戶的訪問模式和興趣愛好等有趣、新穎、潛在有用的以及可理解的未知信息和知識,用於分析站點的使用情況,從而輔助管理和支持決策。當前,web日誌挖掘主要被用於個性化服務與定製、改進系統性能和結構、站點修改、商業智能以及web特徵描述等諸多領域。

三、Web日誌挖掘的方法
(一)首先,進行數據的預處理。
從學習者的訪問日誌中得到的原始日誌記錄並不適於挖掘,必須進行適當的處理才能進行挖掘。因此,需要通過日誌清理,去除無用的記錄;對於某些記錄,我們還需要通過站點結構信息,把URL路徑補充成完整的訪問序列;然後劃分學習者,並把學習者的會話劃分成多個事務。
(二)其次,進行模式發現
一旦學習者會話和事務識別完成,就可以採用下面的技術進行模式發現。模式發現, 是對預處理後的數據用數據挖掘演算法來分析數據。分有統計、分類、聚類、關等多種方法。
① 路徑分析。它可以被用於判定在一個站點中最頻繁訪問的路徑,還有一些其它的有關路徑的信息通過路徑分析可以得出。路徑分析可以用來確定網站上的頻繁訪問路徑, 從而調整和優化網站結構, 使得用戶訪問所需網頁更加簡單快捷, 還可以根據用戶典型的瀏覽模式用於智能推薦和有針對性的電子商務活動。例如:70% 的學習者在訪問/ E-Business /M2時,是從/EB開始,經過/ E-Business /SimpleDescription,/ E-Business /M1;65%的學習者在瀏覽4個或更少的頁面內容後就離開了。利用這些信息就可以改進站點的設計結構。
② 關聯規則。 使用關聯規則發現方法,可以從Web的訪問事務中找到的相關性。關聯規則是尋找在同一個事件中出現的不同項的相關性,用數學模型來描述關聯規則發現的問題:x=>y的蘊含式,其中x,y為屬性——值對集(或稱為項目集),且X∩Y空集。在資料庫中若S%的包含屬性——值對集X的事務也包含屬性——值集Y,則關聯規則X=>Y的置信度為C%。
③ 序列模式。在時間戳有序的事務集中,序列模式的發現就是指那些如「一些項跟隨另一個項」這樣的內部事務模式。它能發現資料庫中如「在某一段時間內,客戶購買商品A,接著會購買商品B,爾後又購買商品C,即序列A→B→C出現的頻率高」之類的信息。序列模式描述的問題是:在給定的交易序列資料庫中,每個序列按照交易的時間排列的一組交易集,挖掘序列函數作用是返回該資料庫中高頻率出現有序列。
④ 分類分析。發現分類規則可以給出識別一個特殊群體的公共屬性的描述,這種描述可以用於分類學習者。分類包括的挖掘技術將找出定義了一個項或事件是否屬於數據中某特定子集或類的規則。該類技術是最廣泛應用於各類業務問題的一類挖掘技術。分類演算法最知名的是決策樹方法,此外還有神經元網路、Bayesian分類等。例如:在/ E-Business /M4學習過的學習者中有40%是20左右的女大學生。
⑤聚類分析。可以從Web訪問信息數據中聚類出具有相似特性的學習者。在Web事務日誌中,聚類學習者信息或數據項能夠便於開發和設計未來的教學模式和學習群體。聚類是將數據集劃分為多個類,使得在同一類中的數據之間有較高的相似度,而在不同類中的數據差別盡可能大。在聚類技術中,沒有預先定義好的類別和訓練樣本存在,所有記錄都根據彼此相似程度來加以歸類。主要演算法有k—means、DBSCAN等。聚類分析是把具有相似特徵的用戶或數據項歸類,在網站管理中通過聚類具有相似瀏覽行為的用戶。基於模糊理論的Web頁面聚類演算法與客戶群體聚類演算法的模糊聚類定義相同,客戶訪問情況可用URL(Uj)表示。有Suj={(Ci,fSuj(Ci))|Ci∈C},其中fSuj(Ci)→[0,1]是客戶Ci和URL(Uj)間的關聯度:式中m為客戶的數量,hits(Ci)表示客戶Ci訪問URL(Uj)的次數。利用Suj和模糊理論中的相似度度量Sfij定義建立模糊相似矩陣,再根據相似類[Xi]R的定義構造相似類,合並相似類中的公共元素得到的等價類即為相關Web頁面。
⑥統計。統計方法是從Web 站點中抽取知識的最常用方法, 它通過分析會話文件, 對瀏覽時間、瀏覽路徑等進行頻度、平均值等統計分析。雖然缺乏深度, 但仍可用於改進網站結構, 增強系統安全性, 提高網站訪問的效率等。
⑦協同過濾。協同過濾技術採用最近鄰技術,利用客戶的歷史、喜好信息計算用戶之間的距離,目標客戶對特點商品的喜好程度由最近鄰居對商品的評價的加權平均值來計算。
(三)最後,進行模式分析。
模式分析。基於以上的所有過程,對原始數據進行進一步分析,找出用戶的瀏覽模式規律,即用戶的興趣愛好及習慣,並使其可視化,為網頁的規劃及網站建設的決策提供具體理論依據。其主要方法有:採用SQL查詢語句進行分析;將數據導入多維數據立方體中,用OLAP工具進行分析並給出可視化的結果輸出。(分類模式挖掘、聚類模式挖掘、時間序列模式挖掘、序列模式挖掘、關聯規則等)

四、關聯規則
(一)關聯規則
顧名思義,關聯規則(association rule)挖掘技術用於於發現資料庫中屬性之間的有趣聯系。一般使用支持度(support)和置信度(confidence)兩個參數來描述關聯規則的屬性。
1.支持度。規則 在資料庫 中的支持度 是交易集中同時包含 , 的事務數與所有事務數之比,記為 。支持度描述了 , 這兩個項集在所有事務中同時出現的概率。
2.置信度。規則 在事務集中的置信度(confidence)是指同時包含 , 的事務數與包含 的事務數之比,它用來衡量關聯規則的可信程度。記為

規則 A Þ C:支持度= support({A}È{C}) = 50%,置信度= support({A}È{C})/support({A}) = 66.6%

(二)Apriori方法簡介
Apriori演算法最先是由Agrawal等人於1993年提出的,它的基本思想是:首先找出所有具有超出最小支持度的支持度項集,用頻繁的(k—1)-項集生成候選的頻繁k-項集;其次利用大項集產生所需的規則;任何頻繁項集的所有子集一定是頻繁項集是其核心。
Apriori演算法需要兩個步驟:第一個是生成條目集;第二個是使用生成的條目集創建一組關聯規則。當我們把最小置信度設為85%,通過關聯規則的形成以及對應置信度的計算,我們可以從中得到以下有用的信息:
1.置信度大於最小置信度時:我們可以這樣認為,用戶群體在瀏覽相關網頁時,所呈列的鏈接之間是有很大關聯的,他們是用戶群的共同愛好,通過網頁布局的調整,從某種意義上,可以帶來更高的點擊率及潛在客戶;
2.置信度小於最小置信度時:我們可以這樣認為,用戶群體對所呈列鏈接之間沒太多的關聯,亦或關聯規則中的鏈接在爭奪用戶。

五、網站中Web日誌挖掘內容
(1)網站的概要統計。網站的概要統計包括分析覆蓋的時間、總的頁面數、訪問數、會話數、惟一訪問者、以及平均訪問、最高訪問、上周訪問、昨日訪問等結果集。
(2)內容訪問分析。內容訪問分析包括最多及最少被訪問的頁面、最多訪問路徑、最多訪問的新聞、最高訪問的時間等。
(3)客戶信息分析。客戶信息分析包括訪問者的來源省份統計、訪問者使用的瀏覽器及操作系統分析、訪問來自的頁面或者網站、來自的IP地址以及訪問者使用的搜索引擎。
(4)訪問者活動周期行為分析。訪問者活動周期行為分析包括一周7天的訪問行為、一天24小時的訪問行為、每周的最多的訪問日、每天的最多訪問時段等。
(5)主要訪問錯誤分析。主要訪問錯誤分析包括服務端錯誤、頁面找不到錯誤等。
(6)網站欄目分析。網站欄目分析包括定製的頻道和欄目設定,統計出各個欄目的訪問情況,並進行分析。
(7)商務網站擴展分析。商務網站擴展分析是專門針對專題或多媒體文件或下載等內容的訪問分析。
(8)有4個方向可以選擇:①對用戶點擊行為的追蹤,click stream研究;②對網頁之間的關聯規則的研究;③對網站中各個頻道的瀏覽模式的研究;④根據用戶瀏覽行為,對用戶進行聚類,細分研究;(如果你能夠結合現有的互聯網產品和應用提出一些自己的建議和意見,那就更有價值了。)
(9)發現用戶訪問模式。通過分析和探究Web日誌記錄中的規律,可以識別電子商務的潛在客戶,提高對最終用戶的服務質量,並改進Web伺服器系統的性能。
(10)反競爭情報活動。反競爭情報是企業競爭情報活動的重要組成部分。

六、相關軟體及演算法
(一)相關軟體:
1.數據挖掘的專用軟體wake。
2.用OLAP工具
3.已經有部分公司開發出了商用的網站用戶訪問分析系統,如WebTrends公司的CommerceTrends 3.0,它能夠讓電子商務網站更好地理解其網站訪問者的行為,幫助網站採取一些行動來將這些訪問者變為顧客。CommerceTrends主要由3部分組成:Report Generation Server、Campain Analyzer和Webhouse Builder。
4.Accrue公司的Accrue Insight,它是一個綜合性的Web分析工具,它能夠對網站的運行狀況有個深入、細致和准確的分析,通過分析顧客的行為模式,幫助網站採取措施來提高顧客對於網站的忠誠度,從而建立長期的顧客關系。
(二)相關演算法:
1.運用各種演算法進行數據挖掘:GSP演算法, Prefixspana演算法,
2.關聯規則分析:Apriori、FP-growth演算法等。
3.Apriori演算法及其變種演算法
4.基於資料庫投影的序列模式生長技術(database project based sequential pattern growth)
5. Wake演算法、MLC++等
6. PageRank演算法和HITS演算法利用Web頁面間的超鏈接信息計算「權威型」(Authorities)網頁和「目錄型」(Hubs)網頁的權值。Web結構挖掘通常需要整個Web的全局數據,因此在個性化搜索引擎或主題搜索引擎研究領域得到了廣泛的應用。
7.參考檢索引擎的挖掘演算法,比如Apache的lucene等。

⑸ B2B企業如何洞察客戶行為,實現用戶行為分析

用戶行為由五要素組成:時間、地點、人物、交互、交互的內容。而內B2B企業的客戶用戶行容為一定是多觸點長周期的。B2B企業需要將各個渠道、觸點上的客戶行為數據整合起來從而分析客戶目前的認知階段和興趣偏好從而去跟進、孵化、轉化客戶。致趣百川SCRM營銷自動化整合多渠道(官網、會議、直播、內容營銷、售後服務、銷售經銷商、口碑營銷、物料折頁等)用戶觸點引流到基於微信服務號的私域流量池對每個客戶通過標簽化體系和線索打分機制來明確用戶畫像,分析客戶行為,從而識別出高質量的商機,並且將意向還不明確的線索持續性、針對性的培育孵化,從而實現從獲客到轉化的營銷閉環。

⑹ 如何設計一個實時大數據用戶行為分析系統

數雲的CRM系統,就是大數據用戶分析的結果,可以進行用戶洞察。

⑺ 急求:學生日常行為分析系統的設計與實現

是課程設計還是畢業設計呢?哈哈

主要肯定是 行為分析和系統實現

行為分析肯定會有一個數據統計調查,你如果學過 窗體類的如C#語言 則可以開發一個統計功能的,讓別人填寫,然後設置一些問題,讓別人答,統計出來就OK了。

演算法的話,沒啥大演算法,大部分通過SQL語句實現。

閱讀全文

與基於用戶行為分析的精確營銷系統設計與實現相關的資料

熱點內容
關於電子商務實訓 瀏覽:556
家庭服務培訓工作實施方案 瀏覽:949
超市產品促銷方案 瀏覽:180
黃山碩客電子商務有限公司 瀏覽:550
315促銷活動對聯 瀏覽:946
打麻將比賽策劃方案 瀏覽:340
電子商務糾紛平台 瀏覽:605
肉類營銷方案怎麼寫 瀏覽:14
上海揭牌儀式策劃方案 瀏覽:154
南昌駿鵬電子商務有限公司怎麼樣 瀏覽:986
傢具促銷活動標語 瀏覽:964
母親節活動促銷軟文 瀏覽:839
少兒小游戲策劃方案 瀏覽:537
電子商務對經營成本的影響 瀏覽:354
房地產全案策劃方案 瀏覽:238
營養品促銷活動簡訊 瀏覽:146
政務大廳普通話培訓方案 瀏覽:509
民間工藝培訓具體實施方案 瀏覽:347
促銷活動人員激勵方案 瀏覽:72
產業扶貧培訓工作方案 瀏覽:248