⑴ 電子商務公司的數據分析是做什麼的
統計
⑵ 電子商務數據分析的電子商務數據分析的五個指標
電子商務數據分析體系包括網站運營指標、經營環境指標、銷售業績指標、運營活動指標和客戶價值指標五個一級指標。
網站運營指標這里定為一個綜合性的指標,其下麵包括有網站流量指標、商品類目指標以及(虛擬)供應鏈指標等幾個二級指標。經營環境指標細分為外部經營環境指標和內部經營環境指標兩個二級指標。銷售業績指標則根據網站和訂單細分為2個二級指標,而營銷活動指標則包括市場營銷活動指標、廣告投放指標和商務合作指標等三個二級指標。客戶價值指標包括總體客戶指標以及新老客戶指標等三個二級指標。 網站運營指標主要用來衡量網站的整體運營狀況,這里Ec數據分析聯盟暫將網站運營指標下面細分為網站流量指標、商品類目指標、以及供應鏈指標。
1.網站流量指標
網站流量指標主要用從網站優化,網站易用性、網站流量質量以及顧客購買行為等方面進行考慮。流量指標的數據來源通常有兩種,一種是通過網站日誌資料庫處理,另一種則是通過網站頁面插入JS代碼的方法處理(二種收集日誌的數據更有長、短處。大企業都會有日誌數據倉庫,以共分析、建模之用。大多數的企業還是使用GA來進行網站監控與分析。)。網站流量指標可細分為數量指標、質量指標和轉換指標,例如我們常見的PV、UV、Visits、新訪客數、新訪客比率等就屬於流量數量指標,而跳出率、頁面/站點平均在線時長、PV/UV等則屬於流量質量指標,針對具體的目標,涉及的轉換次數和轉換率則屬於流量轉換指標,譬如用戶下單次數、加入購物車次數、成功支付次數以及相對應的轉化率等。
2.商品類目指標
商品類目指標主要是用來衡量網站商品正常運營水平,這一類目指標與銷售指標以及供應鏈指標關聯慎密。譬如商品類目結構佔比,各品類銷售額佔比,各品類銷售SKU集中度以及相應的庫存周轉率等,不同的產品類目佔比又可細分為商品大類目佔比情況以及具體商品不同大小、顏色、型號等各個類別的佔比情況等。
3.供應鏈指標
這里的供應鏈指標主要指電商網站商品庫存以及商品發送方面,而關於商品的生產以及原材料庫存運輸等則不在考慮范疇之內。這里主要考慮從顧客下單到收貨的時長、倉儲成本、倉儲生產時長、配送時長、每單配送成本等。譬如倉儲中的分倉庫壓單佔比、系統報缺率(與前面的商品類目指標有極大的關聯)、實物報缺率、限時上架完成率等,物品發送中的譬如分時段下單出庫率、未送達佔比以及相關退貨比率、COD比率等等。 一個客戶的價值通常由三部分組成:歷史價值(過去的消費)、潛在價值(主要從用戶行為方面考慮,RFM模型為主要衡量依據)、附加值(主要從用戶忠誠度、口碑推廣等方面考慮)。這里客戶價值指標分為總體客戶指標以及新、老客戶價值指標,這些指標主要從客戶的貢獻和獲取成本兩方面來衡量。譬如,這里用訪客人數、訪客獲取成本以及從訪問到下單的轉化率來衡量總體客戶價值指標,而對老顧客價值的衡量除了上述考慮因素外,更多的是以RFM模型為考慮基準。
數據分析體系建立之後,其數據指標並不是一成不變的,需要根據業務需求的變化實時的調整,調整時需要注意的是統計周期變動以及關鍵指標的變動。通常,單獨的分析某個數據指標並不能解決問題,而各個指標間又是相互關聯的,將所有指標織成一張網,根據具體的需求尋找各自的數據指標節點。
⑶ 淺談電子商務的數據分析
淺談電子商務的數據分析
隨著科學技術的發展,電子商務技術也在逐步的提升,人們在工作中需要的數據處理也越來越多。下面我們就以電子商務為例,為大家簡單的介紹一下進行數據分析的目的與流程。
一、進行數據分析的目的
人們在工作和生活中需要對數據進行分析,主要有兩個方面:
1、為了更好的發現問題,並且在發現問題的過程中,找到問題的根源,通過採用具體可行有效的辦法,對存在的問題進行解決。
2、為了總結發展趨勢。這里的數據分析就是在以往的數據基礎上,實現對總體數據的分析與總結,主要表現在為網路營銷提供解決支持的辦法。
數據分析在電子商務裡面運用的十分廣泛,可以依據相關的規定,對這些數據進行相關的分類,在依據實際的運營情況下,保證網站的可持續發展。下面我們就來具體的分析一下進行數據分析的流程。
二、進行數據分析的流程
在電子商務方面,進行的數據分析可以分為以下幾個方面。
1、對關鍵數據進行分析
由於不同的電子商務,其定位及針對的客戶群體不同,因此其實際的運營效果也不一樣,因此需要對網站內的關鍵數據進行分析,以此來判斷網站是否在正常運行。網站的關鍵數據包含很多方面,具體為:
(1)、要對網站的獨立用戶的訪問量進行總結分析,換句話說就是對電腦進行網站的訪問數量進行統計,需要注意的是電腦訪問數量與IP地址訪問不是同一個概念。
(2)、統計積極訪問者、忠實訪問者的比率及客戶的轉化率。
(3)、對客戶單價、滿意度。回訪率及投資回報率都要進行一定的數據統計,以此來分析整個網站的實際運營狀況。
2、對收集的數據進行分
網站數據的收集,是進行數據分析前的重要一步,因為它直接決定了分析結果的合理性。因此做好完整、合理、真實的數據收集工作是十分必要的。在這個過程中要注意對網站後台數據、搜索引擎數據、統計工具的數據等進行分析,因為這些數據看似雜亂,實際上是反應網站是否正常運行及運轉狀態的重要標志。
綜上所述,在對電子商務進行數據分析的過程中,不僅要注意以上兩點,還要針對這些數據進行量化分析,在完成所有步驟之後再開始制定方案。只有這樣,才能客觀的反應出公司的實際運轉狀態,才能達到預想的目的。
以上是小編為大家分享的關於淺談電子商務的數據分析的相關內容,更多信息可以關注環球青藤分享更多干貨
⑷ 電商數據分析的意義是什麼
電商數據分析的意義在於:
發現問題,並且找到問題的根源,最終通過切實可行的辦法解決存在的問題。
基於以往的數據分析,總結發展趨勢,為網路營銷決策提供支持。
⑸ 電子商務數據分析的數據分析的重要性
首先,我們要來了解一下數據分析對於一個網站的重要性。筆者並不從理論方面來論證數據分析的重要性,而是從各方對這一方面的動向來了解。 事實上,全球各大行業巨頭都表示進駐「開放數據」藍海。以沃爾瑪為例,該公司已經擁有兩千多萬億位元組數據,相當於200多個美國國會圖書館的藏 書總量。這其中,很大一部分事客戶信息和消費記錄。通過數據分析,企業可以掌握客戶的消費習慣、優化現金和庫存,並擴大銷量,數據已經成為了各行各業商業決策的重要基礎。電商平台也很注重這方面的數據分析,例如世界工廠網,就設有排名榜的數據分析,通過分析用戶在世界工廠網的搜索習慣及搜索記錄,免費提供了產品排行榜、求購排行榜和企業排行榜。無獨有偶,作為行業門戶網站的裝備製造網也即將在未來的發展中提供數據分析的功能,從網站的介紹中可以看到:每月企業網站專 業SEO檢測報告、季度專業行業研究報告等等。所有這些行業的動向,都昭示這一個特點:企業數據、行業分析。也只有行業網站、電商平台等擁有企業數據優勢,而且集合整行業信息,並有分析整合數據的能力,才能真正為企業提供真實、有效的數據分析。從各方對待一個事物的態度與投資動向,我們能很輕易的了解到這一事物的重要程度,從以上的事例可以看出,數據分析對於各行各業都非常的重要,尤其是對於電子商務平台。
⑹ 如何做電商數據分析
目前我也從事數據分析,主要用到的是數據透視表;主要是提供一些報表供回領導參考。其實我感覺應該用答到了5W2H分析法,領導還跟我說過SWTO矩陣分析法,讓我下去仔細研究。
據說數據分析要有以下的一些步驟:明確分析思路,數據收集,收集存儲,數據整理,數據分析,數據呈現,報告撰寫等。
電商的數據分析,我個人以為,應該至少有銷量分析,包括銷量,銷售額,客戶人數,地區分布,top30等,我們公司還有頁碼分析;倉庫分析,包括庫存清倉表,庫存預警表,銷售渠道分析;購買意向性分析,季節性,促銷活動等對銷售的影響等。具體問題具體分析,我知道的另一家電商分析卻採用的是數學模型分析預測的。