导航:首页 > 营销推广 > 大数据风控产品推广

大数据风控产品推广

发布时间:2021-06-12 00:50:22

1. 怎么做大数据风控方案

创建方案:

1、评分建模:风控部分;

2、IT系统:业务系统、审批系统、征信系统、催收系统、账务系统;

3、决策配置工具:即信贷决策引擎;

4、征信大数据的整合模块。

大数据风控系统的优势是大数据驱动,兼容手动、自动审批、决策、后台管理。

2. 大数据风控有哪些优点

现在的大数据风控大多都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。壹诺信用结合自身的大数据智能风控风控经验整理了大数据风控的5个特点。
第一:分析客户线上申请行为来识别欺诈
风控可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等。此外,用户申请的时间也很关键,一般晚上11点以后申请贷款的申请人,欺诈比例和违约比例较高。
第二:利用黑名单和灰名单识别风险
黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的黑名单来提高查得率。如支付清算协会风险共享系统、中国电子商务协会反欺诈系统等都是黑名单数据库。
第三:利用消费记录来进行评分
常用的消费记录由银行卡消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。
第四:参考借款人社会属性和行为来评估信用
参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高;贷款用于家庭消费和教育的贷款人,其贷款违约率低;贷款次数多的人,其贷款违约率低于第一次贷款的人。
第五:验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。
作为大数据在金融科技领域的最佳实践者,壹诺信用专注于大数据风控、信贷管理、信用信息查询等一站式服务模式,并实现了数据在消费金融领域的全流程应用,通过大数据与科技力量,有效控制风险,确保每一步操作都安全无忧,最终推动互联网金融向更加便捷、高效的领域发展!

3. 为什么要使用大数据风控大数据风控有什么用呢

风控即风险控制,大数据风控是指通过运用大量多重数据构建模型的方法对风险进行分析,以给客户端进行风险预警和风险控制。

传统的风控技术,多由各机构自己的风控团队,以人工的方式进行经验控制(因为每个团队不同,风控质量参差不齐,最关键人工的无限制是数据处理能力弱,数据中的异常分析能力差);而大数据风控是借助互联网海量数据,对数据进行多维度,智能化,标准化处理,数据处理结果越来越精准。

(举个简单的例子,你去银行贷款,传统的人控,只去看下最近三年的贷款和银行的流水记录,但大数据风控,可以调查你最近10年的记录,再分析你有没骗贷的可能。)

4. 大数据风控用了什么模型有效性如何

目前贷款的风控因为每一个样本的收集都需要放款来收集,想想每人放一万,一个亿也就只能放1万人,所以样本量不会太大。所以所谓大数据风控主要是大在特征的数据上。很多时候是用了很多传统上不怎么敢用的特征。比如传统风控比较害怕missing value 比较害怕不稳定的特征 这些都是大数据风控需要解决的。说到模型,既然是特征多,样本少,那就需要一个非常抗过拟合的模型。另外如果是单独针对反欺诈而不是信用,因为问题比较非线性,所以需要一个有非线性能力的模型。满足这两者要求的都可以。当然上面说到的只是针对预测贷款用户好坏的二分类问题,至于很多风控领域的其他问题,就有不同的解决方案了。说到有效性。据我所知目前市场上有一些非常小额短期的产品已经可以完全按照一个模型放款并盈利了。完全不需要人参与。这类产品通过小额解决了样本少的问题。通过短期解决了收集label慢的问题。所以还不太容易推广到大额长期产品上去。

5. 大数据风控系统方面做的好的企业有哪些

大数据风控方面推荐布尔数据。
布尔数据是一家智能风控产品提供商。拥有业内专业的AI风控引擎技术,将机器算法的有监督及无监督算法融合为契合国内市场实际情况的全监督算法。结合现在主流的多种模型算法,对多维度数据之间的关联度进行分析,并以独有技术经验和超强的资源整合能力,做到分行业分场景预测,具有极高的准确度和覆盖度,评分质量高于同行60%。

6. 国内大数据风控模型方面做的好的企业有哪些

在模型方面布尔数据是排的上的。
布尔数据是一家智能风控产品提供商。拥有业内专业的AI风控引擎技术,将机器算法的有监督及无监督算法融合为契合国内市场实际情况的全监督算法。结合现在主流的多种模型算法,对多维度数据之间的关联度进行分析,并以独有技术经验和超强的资源整合能力,做到分行业分场景预测,具有极高的准确度和覆盖度,评分质量高于同行60%。

7. 大数据风控方案

传统的风控系统比较简单, 一套简单的IT系统结合线上线下征信,征信数据来源局限,原理简单,风险较大。
相对于大数据风控系统来说,由于大数据征信评分原因,IT系统相对完善,数据来源来源征信机构及互联网各种平台相关数据。
大体有四部分功能:
1、评分建模,风控部分;
2、IT系统:业务系统、审批系统、征信系统、催收系统、账务系统;
3、决策配置工具,即信dai决策引擎;
4、征信大数据的整合模块。
大数据风控系统优势是大数据驱动,兼容手动、自动审批、决策、dai后管理。
鉴于大数据风控系统大大降低了风险,目前信dai行业,特别是小微金融机构大数据风控应用趋于普遍。神州融首推出了大数据风控平台、融360等也相继推出了自己的风控系统。

8. 国内大数据风控方面做的比较好的企业有哪些

网络上用户的评论中的赞扬、喜好、抱怨等信息其实蕴含着巨大的商机,它是我们窥探竞争对手产品弱点以及发现新的用户需求与喜好的丰富来源。这些信息对于公关部门、品牌部门、研发部门深入了解用户状态与心理非常有帮助。好的口碑传播可以推动企业的产品销售,而负面口碑的传播可以迅速导致企业的危机。

企业形象的构成:产品形象、媒介形象、组织形象、标识形象、人员形象、文化形象、 环境形象、社区形象。

对于一家知名企业,关于网络口碑需要了解以下问题: 用户意见表达平台中关于自己品牌的言论有哪些?分属哪些类别?哪些具有重要反馈意义?哪些具有正面价值?哪些具有负面价值?究竟是谁在何时发表的这个意见?有多少人看了这个意见?有多少人回复了这个意见?哪些需要引导?哪些需要应对?哪些需要危机预警?用户意见表达平台中关于竞争品牌的言论有哪些?分属哪些类别?哪些具有重要反馈意义?哪些具有正面价值?哪些具有负面价值?哪些需要利用?

实时收集分类整理用户的各种评价信息是公司口碑监测的重点。

[多瑞科舆情数据分析站系统重点信息预警流程图]

网民作为消费者的一部分,充分利用了网络内容的公开性、个人私密性以及信息互动性,通过论坛、贴吧、博客、微博、微信等网络媒体自由地抒发、评论对某种消费品品牌的观点和看法。及时了解企业品牌口碑现状及舆论导向,把握和引领消费者的评价,已经成为各大企业维护和扩大品牌知名度,改进自己的产品,加速占领市场的有效战略和措施。对于一个企业来说,企业的价值就是企业的形象,与企业相关口碑的好坏,直接会影响企业的发展。如何对于自家企业的产品、竞争行业有一个比较清晰和客观的认识,多瑞科舆情数据分析站提供的企业形象引导在其中就起到了相当大的作用。目前在做新企业形象调研的公司和企业机构很多,但是真正起到实际效果、真正让客户满意的却并不多见,而在这些少数受到好评的机构当中,多瑞科舆情数据分析站系统将不断完善这项服务。

解决关键

集团企业有别于一般企业的舆情监测,他其实有若干的监测主体,每一个企业就是一个监测主体;同时各企业的经营业务可能不同,要充分考虑到系统是否支持对多业务的采集、分析和处理。及时全网获取互联网企业品牌、产品评价、所属行业信息,为企业发展决策提供参考。

解决方案

多瑞科舆情数据分析站系统通过对海量网络舆论信息进行实时的自动舆情采集,舆情分析,舆情汇总,舆情监视,并识别其中的关键舆情信息,及时通知到相关人员,对于企业关注的重点信息,可以自行添加目标监测网站,用户可以很容易地对目标网站进行可视化分析,配置出采集任务文件,加入调度过程,从而可以任意修改,增加,移除监测目标,真正实现第一时间应急响应,为企业形象舆论导向及收集网友意见提供直接支持的一套信息化平台。时刻关注一个公司的企业形象,可以洞察文化的系统概貌和整体水平,也可以评估它在市场竞争中的真正实力。一个企业良好的形象主要表现在:企业环境形象、产品形象、领导和员工的形象,对于多瑞科舆情数据分析站内关键词的设置可以从这些方面着手,例如:“某公司某某董事长”等等。

实施收益

获取互联网企业品牌、产品评价、所属行业信息,为企业发展决策提供参考。

9. 国内大数据风控方面做的比较好的企业有哪些数据的获得途径有哪些

大数据风控主要有两点,一是风控模型,二是数据。模型是各企业的核心机密,无从得知,基本会从信用历史、职业特征、收入分析等诸多方面入手;数据由于数据孤岛现象,是目前各企业重要的资产。数据来源大致可分为三个方面:一是用户提交的包括身份信息、职业信息、收入信息等数据;二是外部数据,包括从政府机构获取的数据以及合作金融、电商等机构提供的第三方数据;三是自身行业生态链中产生的数据,如淘宝的购物数据。就我接触到的行业,大数据风控一是互联网消费金融公司做消费金融风控,二是用于做大数据征信进而衍生出小额贷款、互联网消费分期等业务。国内知名企业有:阿尔法象、蚂蚁金服、京东金融等。做个人征信的知名企业有芝麻信用、前海征信、考拉征信,这些企业有自己核心数据;专业做大数据风控的公司基本是初创公司,其风控仍有待检验,包括聚信立、Wecash闪银、量化派等。

10. 大数据风控是什么

大数据风控指的就是大数据风险控制,是指通过运用大数据构建模型的方法进行风险控制和风险提示。通过采集大量企业或个人的各项指标进行数据建模的大数据风控更为科学有效。

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据风控主要是通过建立数据风险模型,筛选海量数据,提取出对企业有用的数据,再进行分析判断风险性。

(10)大数据风控产品推广扩展阅读

大数据风控能解决的问题:

1、有效提高审核的效率和有效性:

引入大数据风控技术手段分析,通过多维度的信息分析、过滤、交叉验证、汇总,可以形成一张全面的申请人数据画像,辅助审核决策,可以提高审核的效率和有效性。 

2、有效降低信息的不对称:

引入大数据风控技术手段分析,通过多维度的信息分析、过滤、交叉验证、汇总,可以形成一张全面的申请人数据画像,辅助审核决策,可以提高审核的效率和有效性。 

3、有效进行贷后检测:

通过大数据技术手段对贷款人进行多维度动态事件(如保险出险、频繁多头借贷、同类型平台新增逾期等)分析,做到及时预警。

参考资料来源:网络-大数据风控

阅读全文

与大数据风控产品推广相关的资料

热点内容
人民大学市场营销专业 浏览:427
雅戈尔gy营销推广方案 浏览:862
市场营销咖啡 浏览:73
银行跨年度电话营销方案 浏览:79
市场营销理论的中心 浏览:224
中秋节重阳节活动策划方案 浏览:309
洞悉消费者的市场营销策略 浏览:778
茶具店做促销活动语言 浏览:728
试课稿市场营销 浏览:291
银行团委搞活动策划方案 浏览:948
教育培训方案实施步骤 浏览:307
病毒营销策划方案 浏览:144
北京网络营销公司有多少家 浏览:76
中国移动电子商务中心 浏览:653
哈根达斯营销推广方案 浏览:407
家具品牌营销方案 浏览:942
啤酒销售营销方案 浏览:158
公益活动捐书策划方案 浏览:26
汽车营销渠道系统规划方案 浏览:860
2014年10月市场营销学试题及答案 浏览:793