导航:首页 > 培训大全 > 数据库ETL培训课程内容

数据库ETL培训课程内容

发布时间:2022-06-21 01:18:19

A. ETL工程师是做什么的

ETL工程师又叫数据库工程师。

ETL工程师的主要工作内容有:从事系统编程、数据库编程与设计。ETL是数据仓库中的非常重要的一环。它是承前启后的必要的一步。相对于关系数据库,数据仓库技术没有严格的数学理论基础,它更面向实际工程应用。

所以从工程应用的角度来考虑,按着物理数据模型的要求加载数据并对数据进行一些系列处理,处理过程与经验直接相关,同时这部分的工作直接关系数据仓库中数据的质量,从而影响到联机分析处理和数据挖掘的结果的质量。

职业前景

从业务角度讲,随着数据应用的日益丰富,不同平台、系统的相互大批量数据交互成常态,仅仅满足于采集数据已经不适应业务需要,还需要能够为数据的目的端落地提供支撑,ETL工程师需要一个端到端的更适应业务需要的数据交换系统。

从技术角度讲,ETL做一定的扩展可以升级为兼具交换能力,两者有传承,可以实现平滑过渡,但交换却要考虑用另一个工具实现,同时未来大数据平台组件将异常丰富,相互之间的数据交换将是常态,必要要有更高级别的交换工具满足这些需求。

B. 什么是数据ETL

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过萃取(extract)、转置(transform)、加载(load)至目的端的过程。

ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

(2)数据库ETL培训课程内容扩展阅读

ETL(orELT)的流程可以用任何的编程语言去开发完成,由于ETL是极为复杂的过程,而手写程序不易管理,有愈来愈多的企业采用工具协助ETL的开发,并运用其内置的metadata功能来存储来源与目的的对应(mapping)以及转换规则。

工具可以提供较强大的连接功能(connectivity)来连接来源端及目的端,开发人员不用去熟悉各种相异的平台及数据的结构,亦能进行开发。

当然,为了这些好处,付出的代价便是金钱。

参考资料来源:网络-ETL

C. 大数据开发工程师要学习哪些课程

1.大数据工程师工作中会做什么?

集群运维:安装、测试、运维各种大数据组件
数据开发:细分一点的话会有ETL工程师、数据仓库工程师等
数据系统开发:偏重Web系统开发,比如报表系统、推荐系统等
这里面有很多内容其实是十分重合的,下面大致聊一下每一块内容大致需要学什么,以及侧重点。
2.集群运维
数据工程师,基本上是离不开集群搭建,比如hadoop、Spark、Kafka,不要指望有专门的运维帮你搞定,新组件的引入一般都要自己来动手的。
因此这就要求数据工程师了解各种大数据的组件。
由于要自己的安装各种开源的组件,就要求数据工程师要具备的能力: Linux 。要对Linux比较熟悉,能各种自己折腾着玩。
由于现在的大数据生态系统基本上是 JVM系的,因此在语言上,就不要犹豫了,JVM系的Java和Scala基本上跑不掉,Java基本上要学的很深,Scala就看情况了。
3. ETL
ETL在大数据领域主要体现在各种数据流的处理。这一块一方面体现在对一些组件的了解上,比如Sqoop、Flume、Kafka、Spark、MapRece;另一方面就是编程语言的需要,Java、Shell和Sql是基本功。
4.系统开发
我们大部分的价值最后都会由系统来体现,比如报表系统和推荐系统。因此就要求有一定的系统开发能力,最常用的就是 Java Web这一套了,当然Python也是挺方便的。
需要注意的是,一般数据开发跑不掉的就是各种提数据的需求,很多是临时和定制的需求,这种情况下, Sql就跑不掉了,老老实实学一下Sql很必要。
如何入门?
前面提到了一些数据工程师会用到的技能树,下面给一个入门的建议,完全个人意见。
1.了解行业情况
刚开始一定要了解清楚自己和行业的情况,很多人根本就分不清招聘信息中的大数据和数据挖掘的区别就说自己要转行,其实是很不负责的。不要总是赶热点,反正我就是经常被鄙视做什么大数据开发太Low,做数据就要做数据挖掘,不然永远都是水货。
2.选择学习途径
如果真是清楚自己明确地想转数据开发了,要考虑一下自己的时间和精力,能拿出来多少时间,而且在学习的时候最好有人能多指点下,不然太容易走弯路了。
在选择具体的学习途径时,要慎重一点,有几个选择:
自学
报班
找人指点
别的不说了,报班是可以考虑的,不要全指望报个辅导班就能带你上天,但是可以靠他帮你梳理思路。如果有专业从事这一行的人多帮帮的话,是最好的。不一定是技术好,主要是可沟通性强。
3.学习路线
学习路线,下面是一个大致的建议:
第一阶段
先具备一定的Linux和Java的基础,不一定要特别深,先能玩起来,Linux的话能自己执行各种操作,Java能写点小程序。这些事为搭建Hadoop环境做准备。
学习Hadoop,学会搭建单机版的Hadoop,然后是分布式的Hadoop,写一些MR的程序。
接着学学Hadoop生态系统的其它大数据组件,比如Spark、Hive、Hbase,尝试去搭建然后跑一些官网的Demo。
Linux、Java、各种组件都有一些基础后,要有一些项目方面的实践,这时候找一些成功案例,比如搜搜各种视频教程中如何搞一个推荐系统,把自己学到的用起来。
第二阶段
到这里是一个基本的阶段了,大致对数据开发有一些了解了。接着要有一些有意思内容可以选学。
数据仓库体系:如何搞数据分层,数据仓库体系该如何建设,可以有一些大致的了解。
用户画像和特征工程:这一部分越早了解越好。
一些系统的实现思路:比如调度系统、元数据系统、推荐系统这些系统如何实现。
第三阶段
下面要有一些细分的领域需要深入进行,看工作和兴趣来选择一些来深入进行
分布式理论:比如Gossip、DHT、Paxo这些构成了各种分布式系统的底层协议和算法,还是要学一下的。
数据挖掘算法:算法是要学的,但是不一定纯理论,在分布式环境中实现算法,本身就是一个大的挑战。
各种系统的源码学习:比如Hadoop、Spark、Kafka的源码,想深入搞大数据,源码跑不掉。

D. ETL基本常识是什么

对于做过 BI 开发的朋友,ETL 并不陌生,只要涉及到数据源的数据抽取、数据的计算和处理过程的开发,都是 ETL,ETL 就这三个阶段,Extraction 抽取,Transformation 转换,Loading 加载。
从不同数据源抽取数据 EXTRACTION ,按照一定的数据处理规则对数据进行加工和格式转换 TRASFORMATION,最后处理完成的输出到目标数据表中也有可能是文件等等,这个就是 LOADING。
再通俗一点讲,ETL 的过程就跟大家日常做菜一样,需要到菜市场的各个摊位买好菜,把菜买回来要摘一下,洗一洗,切一切最后下锅把菜炒好端到饭桌上。菜市场的各个摊位就是数据源,做好的菜就是最终的输出结果,中间的所有过程像摘菜、洗菜、切菜、做菜就是转换。
在开发的时候,大部分时候会通过 ETL 工具去实现,比如常用的像 KETTLE、PENTAHO、IBM DATASTAGE、INFORNAICA、微软 SQL SERVER 里面的 SSIS 等等,在结合基本的 SQL 来实现整个 ETL 过程。


也有的是自己通过程序开发,然后控制一些数据处理脚本跑批,基本上就是程序加 SQL 实现。
哪种方式更好,也是需要看使用场景和开发人员对那种方式使用的更加得心应手。我看大部分软件程序开发人员出身的,碰到数据类项目会比较喜欢用程序控制跑批,这是程序思维的自然延续。纯 BI 开发人员大部分自然就选择成熟的 ETL 工具来开发,当然也有一上来就写程序脚本的,这类 BI 开发人员的师傅基本上是程序人员转过来的。
用程序的好处就是适配性强,可扩展性强,可以集成或拆解到到任何的程序处理过程中,有的时候使用程序开发效率更高。难就难在对维护人员有一定的技术要求,经验转移和可复制性不够。
用 ETL 工具的好处,第一是整个 ETL 的开发过程可视化了,特别是在数据处理流程的分层设计中可以很清晰的管理。第二是链接到不同数据源的时候,各种数据源、数据库的链接协议已经内置了,直接配置就可以,不需要再去写程序去实现。第三是各种转换控件基本上拖拉拽就可以使用,起到简化的代替一部分 SQL 的开发,不需要写代码去实现。第四是可以非常灵活的设计各种 ETL 调度规则,高度配置化,这个也不需要写代码实现。
所以在大多数通用的项目中,在项目上使用 ETL 标准组件开发会比较多一些。
ETL 从逻辑上一般可以分为两层,控制流和数据流,这也是很多 ETL 工具设计的理念,不同的 ETL 工具可能叫法不同。
控制流就是控制每一个数据流与数据流处理的先后流程,一个控制流可以包含多个数据流。比如在数据仓库开发过程中,第一层的处理是ODS层或者Staging 层的开发,第二层是 DIMENSION维度层的开发,后面几层就是DW 事实层、DM数据集市层的开发。通过ETL的调度管理就可以让这几层串联起来形成一个完整的数据处理流程。
数据流就是具体的从源数据到目标数据表的数据转换过程,所以也有 ETL 工具把数据流叫做转换。在数据流的开发设计过程中主要就是三个环节,目标数据表的链接,这两个直接通过 ETL 控件配置就可以了。中间转换的环节,这个时候就可能有很多的选择了,调 SQL 语句、存储过程,或者还是使用 ETL 控件来实现。
有的项目上习惯使用 ETL 控件来实现数据流中的转换,也有的项目要求不使用标准的转换组件使用存储过程来调用。也有的是因为数据仓库本身这个数据库不支持存储过程就只能通过标准的SQL来实现。
我们通常讲的BI数据架构师其实指的就是ETL的架构设计,这是整个BI项目中非常核心的一层技术实现,数据处理、数据清洗和建模都是在ETL中去实现。一个好的ETL架构设计可以同时支撑上百个包就是控制流,每一个控制流下可能又有上百个数据流的处理过程。之前写过一篇技术文章,大家可以搜索下关键字 BIWORK ETL 应该在网上还能找到到这篇文章。这种框架设计不仅仅是ETL框架架构上的设计,还有很深的ETL项目管理和规范性控制器思想,包括后期的运维,基于BI的BI分析,ETL的性能调优都会在这些框架中得到体现。因为大的BI项目可能同时需要几十人来开发ETL,框架的顶层设计就很重要。

E. 大数据培训课程介绍,大数据学习课程要学习哪些

目前大数据培训机构提供的课程大约有两种:一是大数据开发,二是数据分析与挖掘大数据培训一般指大数据开发,不需要数学和统计学基础,学习的内容大概有:

0基础:

第一阶段: Java开发·

第二阶段: 大数据基础·

第三阶段: Hadoop生态体系·

第四阶段: Spark生态系统·

第五阶段: 项目实战

提高班:

第一阶段:大数据基础·

第二阶段:Hadoop生态体系·

第三阶段:Spark生态系统·

第四阶段:项目实战

F. etl工程师是做什么的,工作内容是什么

etl工程师是从事系统编程、数据库编程与设计,要掌握各种常用的编程语言的专业技术人员。也叫数据库工程师。
工作内容:
见岗位职责:
1. 海量数据的ETL开发,抽取成各种数据需求。
2. 参与数据仓库架构的设计及开发 。
3. 参与数据仓库ETL流程优化及解决ETL相关技术问题。
4、熟悉主流数据库技术,如oracle、Sql server、PostgeSQL等。
4、精通etl架构,有一定的etl开发经验,了解日常作业的部署和调度。
5、会数据etl开发工具,如Datastage,Congos,Kettle等。

G. 大数据分析学习什么内容

如需学习大数据分析推荐选择【达内教育】,大数据分析学习内容如下:

1、数学知识
数学知识是【数据分析师】的基础知识。初级数据分析师需要了解一些描述统计相关的基础内容,有一定的公式计算能力。
2、分析工具
初级数据分析师数据透视表和公式使用必须熟练。还要学会一个统计分析工具,SPSS作为入门比较好。
3、编程语言
对于初级数据分析师,会写SQL查询、Hadoop和Hive查询就可以。对于高级数据分析师,除了SQL以外,学习Python是很有必要,用来获取和处理数据都是事半功倍。
4、业务理解
业务理解是数据分析师所有工作的基础,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。感兴趣的话点击此处,免费学习一下

想了解更多有关大数据的相关信息,推荐咨询【达内教育】。该机构致力于面向IT互联网行业,培养软件开发工程师、测试工程师、UI设计师、网络营销工程师、会计等职场人才,拥有行业内完善的教研团队,强大的师资力量,确保学员利益,全方位保障学员学习;更是与多家企业签订人才培养协议,全面助力学员更好就业。达内IT培训机构,试听名额限时抢购。

H. 搞ETL开发,要会些什么啊

肯定要懂数据库,ETL主要是写存储过程,还要懂一些linux命令。

I. ETL工程师要学什么

技术方面:需要学习使用数据源、目标端工具的基本使用(如 oracle MySQL hive等);需要学习etl工具的安装配置常用错误解决(如 kettle DataStage infa sqoop datax等)

理论方面:懂得数仓分层架构,维度建模等。

从ETL的字面来看,它主要包含三大阶段,分别是数据抽取、数据转换、数据加载。

1.数据抽取

这个阶段的主要目标是汇总多种数据源,为下一步的转换做准备。

2.数据转换

这个阶段是ETL的核心环节,也是最复杂的环节。它的主要目标是将抽取到的各种数据,进行数据的清洗、格式的转换、缺失值填补、剔除重复等操作,最终得到一份格式统一、高度结构化、数据质量高、兼容性好的数据,为后续的分析决策提供可靠的数据支持。

3.数据加载

这个阶段的主要目标是把数据加载至目的地,比如数据仓库中。通常的做法是,将处理好的数据写成特定格式(如parquet、csv等)的文件,然后再把文件挂载到指定的表分区上。也有些表的数据量很小,不会采用分区表,而是直接生成最终的数据表。

了解了ETL这部分的工作主要做什么,接下来再来说作为ETL工程师需要具备哪些技能,这些也就是需要学习的重点——

1、精通SQL语言,具备存储过程开发能力,能熟练进行SQL查询优化;

2、熟悉Hive数据仓库设计,了解数据仓库模型及思想、维度建模思想,了解数据仓库;

3、熟悉Hadoop、Spark、Flink、Kafka等相关技术;

4、熟练Python、Java中至少一种语言;

5、熟悉Mysql、Nosql等常见数据库。

J. 大数据培训课程大纲要学什么课程

课纲不一样,看是大数据开发还是大数据分析了,我学的大数据分析可视化,学的主版要有Python入门、权sql、oracle、tableau、帆软、Informatica、Excel等等
我刚出来半年,视频录播可能还不算落后,有视频可***

阅读全文

与数据库ETL培训课程内容相关的资料

热点内容
应急培训方案计划表 浏览:118
辽宁众赢电子商务是真的吗 浏览:195
产品培训活动策划方案 浏览:178
重视电子商务发展 浏览:132
国际电子商务示范法最新版 浏览:543
浅谈电子商务对东莞企业的影响 浏览:727
消防培训演练实施方案 浏览:976
银行合规制度培训计划方案 浏览:19
电子商务投资协议 浏览:789
315策划活动方案 浏览:420
河南星光电子商务 浏览:855
市场营销学知到测试答案 浏览:420
学市场营销的可以找什么工作 浏览:220
市场营销策划专员岗位职责 浏览:633
如何让避免跨界电子商务逃税 浏览:141
非公党建外出培训班培训方案 浏览:231
安全培训方案模板下载 浏览:489
县级教师培训团队项目实施方案 浏览:367
移动开门红营销方案 浏览:814
零食促销方案范文 浏览:765