Ⅰ 手性分子如何判断
做出一对实物和镜象的模型,若二者不能完全重叠,它们代表的分子就是手性分子;如果能重叠,则它们所代表的分子是非手性分子。
在一个分子中,若存在对称因素,这样的分子往往能与自己的镜像相重叠,因此就不是手性分子;若不存在对称因素,则是手性分子。对称因素包括对称面、对称中心及对称轴等。下面简单介绍一下对称面和对称中心。
有机化合物是含碳的化合物,一个碳原子的最外层上有四个电子,若以单键成键时,可以形成四个共价单键,共价键指向四面体的顶点,当碳原子连接的四个基团各不相同时,与这个碳原子相连接的四个基团有两种空间连接方式,这两种方式如同左右手,互为“镜像”,也是不能完全叠合在一起的。
手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。
一、色谱法
色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分。目前,高效液相色谱、气相色谱、超临界流体色谱、模拟移动床色谱和毛细管电泳等在手性研究中得 到 了 广 泛 应 用。
二、手性传感器识别法
电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振动频率改变,故称为石英晶体微天平。
三、光谱法
采用紫外-可见光谱、荧光光谱、红外光谱和圆二色光谱法等考察手性选择剂和手性底物的混合溶液在光谱上的细微变化,辅助以化学计量学分析或其它光谱联用也可用于手性识别研究。
Ⅱ 什么叫做移动床
移动床
流体和固体颗粒同时进入反应器,它们互相接触,一面进行反应,一面颗粒移动,这种反应床层叫做移动床。
移动床原理
流动相在床层内通过循环泵不断自下而上循环流动,而吸附剂颗粒依靠重力向下移动,与进料逆流接触。床层中部连续进料,弱吸附组分从床层顶部流出,而强吸附组分在固定相作用下从床层底部流出,逐步完成吸附、精制和解吸的过程。
模拟移动床
是一种利用吸附原理进行液体分离操作的传质设备。它是以逆流连续操作方式,通过变换固定床吸咐设备的物料进出口位置,产生相当于吸附剂连续向下移动,而物料连续向上移动的效果。这种设备的生产能力和分离效率比固定吸附床高,又可避免移动床吸附剂磨损、碎片或粉尘堵塞设备或管道以及固体颗粒缝间的沟流。
Ⅲ 彭奇菊的功效与作用
味甘苦、性微寒,有疏散风热、平肝明目,清热解毒的功效,主治风热感冒,头痛眩晕,目赤肿痛、眼目昏花、疮痈肿毒等病症。
Ⅳ 为什么会出现催化重整的芳烃转化率超过100%
因为计算芳烃潜含量时只计算环烷烃和芳烃的含量,而在重整反应中,链烷烃脱氢环化也会生成芳烃,所以才会出现芳烃转化率大于100%
Ⅳ 邻二甲苯 间二甲苯 对二甲苯 分离
这个操作较难!邻二甲苯的沸点相对较高,可以利用精馏方法分出,对精馏设备要求较高,对二甲苯熔点较高,利用分步结晶法提纯,将含有间-二甲苯和对-二甲苯的混二甲苯馏分进行共熔结晶(结晶温度为-53.1℃),得到含对-二甲苯12.5%、间-二甲苯87.5%的共熔物,再通过二次结晶分离这两种产品的方法。经第一次结晶并过滤得到的晶体,即为工业间-二甲苯。滤液进行第二次结晶时,加入适量四氯化碳,它可以与对-二甲苯形成初始结晶温度为-40℃的固态络合物,与间-二甲苯形成初始结晶温度为-78℃的固态络合物。控制结晶温度,仅使四氯化碳和对-二甲苯结晶。过滤得到的结晶经熔化,用精馏法分离出四氯化碳,得到对-二甲苯。滤液经精馏回收四氯化碳后,得到间-二甲苯。过程中的四氯化碳循环使用。
这是目前工业上的分离方法。其实你查下这几种物质的沸点和熔点,就能想到了
Ⅵ 邻二甲苯、碳九芳烃的性能,用途及重要性,其国标、行标如何规定,生产方法有那些,现有工业装置情况
对二甲苯(PX)是石化工业主要的基本有机原料之一,在化纤、合成树脂、农药、医药、塑料等众多化工生产领域有着广泛的用途。近年来,随着对苯二甲酸(PTA)产能的迅猛增加,我国呈现出对二甲苯供不应求、价位居高不下的局面。据预测,世界PX市场在2001-2008年内,年增长速度为4.5%,同期消费量增长速度为6.5%。但不同地区增长速度有较大的差异。其中,亚洲地区PTA工业发展迅速,区域内PX供应已趋紧张,今后5年将成为全球PX增长的重点区域。此外,中东地区由于新建计划不断,今后5年PX的增长也较快。
随着我国经济的快速发展,对二甲苯作为最重要的基本有机化工原料之一,其需求在过去的5年里已经呈现了强劲的增长态势。受下游产品(主要是PTA工业)的迅速发展,未来几年的PX市场需求将呈快速上升态势,预计需求量年平均增长24.9%,年消费增长率达22.4%。预计2010年,中国PTA装置消费的PX将达到54-61Mt,装置产能的建设远落后于需求的增长,中国PX需求和产量之间的缺口将进一步扩大。
典型的对二甲苯生产方法是从石脑油催化重整生成的热力学平衡的混二甲苯(C8A)中通过多级深冷结晶分离或分子筛模拟移动床吸附分离(简称吸附分离)技术,将对二甲苯从沸点与之相近的异构体混合物中分离出来。而对于邻位和间位的二甲苯及乙苯的处理,往往采取混二甲苯异构化(简称异构化)技术,使之异构化为对二甲苯。甲苯歧化和烷基转移技术是充分利用工业上廉价的甲苯和碳九芳烃/碳十芳烃(C9A/C10A)转化为混二甲苯和苯的有效途径。对于芳烃联合装置,50%以上的混二甲苯由该技术生产,该技术是工业上增产对二甲苯的主要手段。甲苯选择性歧化是生产对二甲苯的一个新途径。近年来,随着催化剂性能的不断提高,该工艺取得了长足的进展。随着乙烯产能的不断提高,甲苯总量将呈上升趋势,从而使该工艺具有良好的市场前景。
本文综述了这两条增产对二甲苯技术路线近年来的进展,并提出了该领域的技术发展趋向。
1 甲苯歧化与烷基转移工艺技术
1.1 典型的生产工艺流程
传统的甲苯歧化生产工艺流程是20世纪60年代末由美国UOP公司与日本TORAY公司联合开发的临氢固定床Tatoray工艺。上海石油化工研究院(SRIPT)进行该技术领域的开发已逾30年,研发的S-TDT工艺已于1997年实现了工业化。与Tatoray工艺相比,S-TDT工艺允许原料中含C10重芳烃,使用具有国际领先水平的HAT甲苯歧化催化剂,装置的能耗和物耗低,从而使该工艺具有优良的技术经济指标。
S-TDT甲苯歧化工艺简要流程为:含有甲苯与含C10重芳烃的C9A原料与循环氢混合后,经反应器进出口换热器换热后,由加热炉加热到所需的反应温度,进入固定床绝热反应器,在催化剂的作用下,反应生成苯和混二甲苯。反应流出物经反应器进出口换热器换热后,再经冷却,进入高压分离罐,分离得到的芳烃液体进入下游分馏单元。分离得到的气体,其中一部分外排,绝大部分气体与补充氢混合后进入循环氢压缩机,经增压后用作循环氢。
1.2 甲苯歧化与烷基转移技术研发进展
1.2.1 TA甲苯歧化催化剂及Tatoray技术
美国UOP公司与日本TORAY公司联合研发了Tatoray甲苯歧化与烷基转移技术,该技术于1969年工业化以来,由于其采用固定床临氢气相反应,操作稳定,运行周期长,技术经济指标先进,目前在全世界已有50多套装置使用该项技术,是本领域工业化的主要技术。该工艺20世纪90年代使用的是TA-4催化剂,从1997年起TA-5催化剂获得工业应用。目前国外Tatoray工艺主要使用TA-4和TA-5催化剂。
UOP公司最新研发了新一代金属加氢脱烷基的TA-20催化剂。由于具有金属加氢裂解功能,提高了催化剂的重芳烃处理能力,能够加工甲苯质量分数为30%的混合进料,允许原料中含有质量分数为1%的烷烃。与原先的TA-4和TA-5催化剂相比,TA-20催化剂的长周期稳定性也得到了改善。
1.2.2 HAT系列甲苯歧化催化剂及S-TDT技术
为了适应芳烃联合装置在反应器及压缩机不作改动而实现扩能改造的需要,SRIPT研究开发了HAT系列甲苯歧化与烷基转移催化剂,其中HAT-095,HAT-096,HAT-097催化剂已从1996年起成功地应用于国内规模为1.3-12.3 Mt/a的甲苯歧化装置上,并且以HAT催化剂为核心技术的S-
TDT甲苯歧化成套技术及催化剂已出口伊朗。表1列出了已工业化的HAT催化剂的主要性能指标。从表1可看出,从HAT-095催化剂到HAT-097催化剂,催化剂的处理能力大幅度增加,而氢烃比却越来越低,现有装置在压缩机不更换的条件下,仅更换催化剂就能实现扩能的目的。同时由于反应进料中允许的C10A的含量越来越高,歧化装置可以加工的重芳烃量越来越多,有效地提高了苯和混二甲苯的产量,提高了装置的经济效益。
HAT催化剂的芳烃处理能力与国外同类工业催化剂相比有了较大幅度的增加,工业运转结果表明,其综合性能达到了国际先进水平。已完成研发的HAT-099催化剂将C10A作为第3种反应原料,允许C9A原料中C10A的质量分数达到25%-30%。HAT-099催化剂的研发成功,将有效地提高重芳烃的利用率,从而较大幅度地增产混二甲苯,达到增产对二甲苯的目的。
近年来,要求甲苯歧化装置能够处理高含量的C9A原料,以生产更多的C8A,满足对二甲苯扩能的需要。SRIPT进行了大孔β沸石催化甲苯和C9A歧化与烷基转移反应的研究,所研制的MXT-01催化剂实验结果表明,在反应进料中C9A的质量分数高达50%,高空速、低氢烃比条件下,其总摩尔转化率达到46%以上,C8A芳烃与苯的摩尔比在3.7以上。与HAT丝光沸石催化剂相比,MXT-01催化剂具有较高的混二甲苯收率,现已完成歧化生产装置中的工业侧线试验。
1.2.3 MTDP-3甲苯歧化与烷基转移技术
MTDP-3甲苯歧化与烷基转移技术是Mobil公司开发的能加工一定量C9A的技术。该技术由于使用的是ZSM-5分子筛,要求反应进料中C9A的质量分数不高于25%。允许在低氢烃摩尔比(小于等于3)条件下运转是该技术的竞争优势。
在MTDP-3技术的基础上,为了提高处理C9A及部分C10A原料的能力,Mobil公司与台湾中国石油公司(CPC)联合开发了TransPlus工艺,并于1997年在中国台湾的林园石化厂首次工业化。该技术使用了一种具有较好的重芳烃轻质化功能的催化剂,从而使其能够加工含有一定量C10A和C9A的原料。据称,C9原料中允许C10A的质量分数最高可达25%以上,反应混合原料中C9A的质量分数可达到40%以上,但至今尚未有工业化数据报道。典型的操作条件为:反应温度385-500℃,反应压力2.1-2.8MPa,芳烃质量空速2.5-3.6h-1,氢烃摩尔比不大于3,总转化率为45%-50%。
1.2.4 其它工艺技术
Arco-IFP公司的二甲苯增产法(Xylene-Plus)于1968年实现工业化,使用稀土Y型沸石,活性和选择性低,分别为28%-30%和92.5%;由于使用移动床反应器,催化剂需连续再生,能耗大。可以用甲苯和C9A为原料。原料中允许的C¬9A含量较低,迄今世界上已工业化的装置仅有4套。
Cosden公司的T2BX法于1985年实现工业化,操作压力较高(4.1MPa),转化率为44%,采用丝光沸石作催化剂,可用甲苯和C9A芳烃作反应原料。近年来未见新的报道。
2 甲苯择形歧化制高浓度对二甲苯的技术
2.1 概述
择形催化可有效地抑制副反应,大大提高目的产物的选择性,使分离工艺过程简化,能耗及投资大幅度减小,因此可有效地提高装置的经济效益。但甲苯择形歧化反应只能用于纯甲苯原料。
甲苯择形歧化反应要得到高的对位选择性,适宜的分子筛孔径大小以及外表面钝化至关重要。分子筛晶体的外表面钝化旨在使快速扩散出分子筛孔道的对二甲苯,在分子筛外表面不再发生异构化反应,又可生成热力学平衡的混二甲苯。
到目前为止,有关ZSM-5分子筛用于甲苯选择性歧化方面的专利报道多来自Mobil公司,少量涉及到与ZSM-5分子筛有类似孔道结构的ZSM-11分子筛。
2.2 国外开发的技术
2.2.1 MSTDP及PXMAX甲苯择形歧化技术
最先实现工业化的甲苯择形歧化技术是Mobil公司1988年推出的采用原位改性技术的MSTDP工艺。MSTDP装置在意大利Gela城的EniChem炼油厂成功运行。其工业化的技术指标为:甲苯转化率25%-30%,对位选择性85%-90%,反应产物中苯与二甲苯的摩尔比为1.44。
1996年该公司又推出了采用异位改性的PX-MAX技术,对二甲苯的选择性可达90%以上,甲苯转化率在30%左右。与MSTDP技术相比,采用PXMAX技术反应产物中苯与二甲苯的摩尔比有所降低,从而能获得更多的对二甲苯。
2.2.2 PX-PLUS甲苯择形歧化技术
UOP公司于1997年推出了据称性能优于MSTDP工艺的PX-PLUS工艺。其主要指标为:甲苯转化率30%,对位选择性90%,反应产物中苯与二甲苯的摩尔比为1.37,对二甲苯收率大约为41%(以转化的甲苯计)。1998年第一套装置实现工业化。
UOP公司认为该技术与以分子筛吸附分离生严对二甲苯的芳烃联合装置相组合,具有良好的互补作用。使用PX-PLUS技术生产的高浓度对二甲苯的混二甲苯经简单结晶分离后,就可获得高纯度的对二甲苯产品,残液中的对二甲苯质量分数仍在40%以上,远高于通常的混二甲苯中对二甲苯的含量,可以直接进入吸附分离单元。
2.3 国内开发的技术
国内在该领域的研究起步于20世纪90年代初,石油化工科学研究院(RIPP)在1999年完成了1L催化剂的工业侧线试验。主要的研究结果为:甲苯转化率大于30%,对位选择性大于90%,但苯与二甲苯的摩尔比较高,为1.6左右。
SRIPT于1997年进行了高对二甲苯收率的甲苯选择性歧化催化剂的研究,目前取得了较好的研究结果。实验室研究结果表明,甲苯转化率以及对位选择性分别为30%和90%,反应产物中苯与二甲苯的摩尔比达到1.4。目前已完成该催化剂的扩大试验,正在准备工业侧线试验。
3 重芳烃脱烷基工艺技术
随着炼油能力的增加,连续重整等芳烃生产装置规模及数量也随之增加,加速了重芳烃脱烷基工艺的开发。由C9A及其以上芳烃经加氢脱烷基生成混二甲苯,能有效地降低装置规模,充分利用所有的重芳烃资源。国外该领域已报道的技术有UOP公司的Toray TAC9工艺、ZEOLYST公司的ATA技术及GTC公司的GT-TransAlk技术等。
3.1 Toray TAC9重芳烃生产混二甲苯的技术
Toray TAC9工艺是用于选择性转化C9-C10芳烃生成混二甲苯的技术。由于C10A也完全用于生产混二甲苯,该技术能够从重芳烃中获得额外的混二甲苯产品。与Tatoray技术一样,TorayTAC9工艺也是使用临氢固定床反应技术,氢气的存在是为了防止结焦,主要的氢气消耗来自手芳烃的脱烷基反应以及非芳烃的裂解反应。为了确保较高的混二甲苯收率,反应生成的苯和甲苯经脱庚烷塔分离后返回到反应器进料中。
该技术的混二甲苯收率受到3方面的影响:总的甲基与苯基的比例、C9A和C10A异构体的分布、进料中C9/C10A的值。对于纯C9A进料,混二甲苯的收率在75%左右,其轻馏分的收率为21%左右。随着进料中C10A含量的增加,混二甲苯的收率下降。
该技术于1996年首次工业应用,催化剂具有良好的稳定性,第一运转周期在两年以上,至1998年,已有两套装置使用该技术,装置规模达到850kt/a。
3.2 ZEOLYST/SK重芳烃脱烷基及烷基转移技术
该技术由ZEOLYST公司与韩国SK公司合作研发并工业化,该技术于1999年首次在SK公司芳烃联合装置上工业应用。
使用贵金属的ATA-11催化剂具有良好的稳定性,第一次运转时间在3年以上,且具有良好的加氢脱烷基功能,生成的C8A中乙苯的质量分数很低(约2%左右),是良好的异构化原料。但由于裂解功能太强,芳环的损失大,强烈放热使反应床层温升过高,要求物料与催化剂的接触时间不能长,需在高空速条件下运转。过高氢耗及放热,造成了进料加热炉以及下游汽提塔等操作困难,因此使用该技术之前必须对现装置进行改造。该技术适用于C9+A加氢脱烷基反应。
3.3 GT-TransAlk重芳烃脱烷基及烷基转移技术
美国GTC公司的GT-TransAlk技术是用于处理C9A/C10A的重芳烃轻质化技术。该技术的特点是原料中不含甲苯,并与甲苯甲基化及结晶分离技术组成一个成套的芳烃技术。
4 未来增产二甲苯工艺技术的发展趋向
由于对二甲苯市场前景良好,未来若干年,相关企业都以现有装置的改造扩能为主要追求目标,有些企业也有新建装置的需求。使得其新技术的研究及现有技术的改进不断提高,成为石油化工领域的研发重点。
4.1 传统的甲苯歧化与烷基转移技术
对于现有的甲苯歧化与烷基转移装置,未来发展的方向主要是提高目的产物的选择性、有效地降低装置的物耗、进一步提高空速和降低氢烃比的新型催化剂的研发,以满足装置不断扩能的要求。
为提高混二甲苯收率,通过选用合适的大孔催化材料以及表面酸性的调变,适当加强烷基转移反应,抑制甲苯歧化反应,从而增加混二甲苯的产量、减少苯的生成量,达到增产对二甲苯的目的。目前SRIPT已开发成功的非丝光沸石型MXT-01催化剂已经完成了工业侧线试验。结果表明,在WHSV为2.5h-1、反应温度低于400℃时,催化剂的总转化率不低于46%,选择性不低于89%,苯与二甲苯的摩尔比在3.5以上,产物中混二甲苯的选择性达到73%。
随着芳烃联合装置的大型化,重芳烃的量已非常可观,如何充分利用重芳烃在很大程度上影响到整个联合装置的经济效益。目前在工业装置操作中,为防止较重的C11及其以上烃组分带入反应器进料中,不得不使部分C10A随C11A及其以上烃排放出界外,造成了重芳烃资源的损失。因此,开发出一种能处理更多C10A,甚至所有重芳烃的催化剂及其技术将是未来重芳烃利用的研发重点。
直接加工不经芳烃抽提的高非芳烃含量的甲苯原料,也是未来发展的趋向之一。该技术能有效地降低抽提单元的负荷,达到扩能和降低能耗的目的。但整个装置的苯产品中的非芳烃含量有所增加。因此,确保苯质量合格、适宜于加工高非芳烃含量的甲苯原料的催化剂的研发也是至关重要的。
4.2 甲苯择形歧化及甲基化制对二甲苯技术
4.2.1 甲苯择形歧化技术
进一步提高对位选择性以及对二甲苯的收率仍是该技术今后的研究重点。越来越高的对位选择性将大幅度地降低分离能耗,有效地降低对二甲苯的生产成本。
4.2.2 甲苯择形歧化与苯/C9A烷基转移组合工艺
尽管甲苯选择性歧化反应可以生成高对二甲苯含量的混二甲苯,但该技术只能使用纯甲苯。对于芳烃联合装置,大量廉价的C9及其以上的芳烃资源无法充分利用。为此,SRIPT提出了芳烃联合装置中甲苯选择性歧化技术与苯/C9A烷基转移技术相结合的组合工艺。
SRIPT于2003年3月完成了苯和C9A烷基转移技术的研发。实验室研究结果表明,在反应原料苯与C9A质量比为60/40、质量空速1.5h-1的条件下,苯和C9A的总转化率在50%以上,生成的甲苯和混二甲苯选择性在90%以上。
该组合工艺中,甲苯择形歧化生成的苯可作为苯/C9A烷基转移单元的原料,而苯/C9A烷基转移单元生成的甲苯则作为前者的原料,既充分应用了甲苯选择性歧化技术,又利用了C9A,最大程度地生产高对二甲苯含量的混二甲苯。
近年来由于对结晶机理的充分研究,使得冷冻结晶分离技术得到了长足的进步,其经济指标日益增强。结合组合工艺生产的高对二甲苯含量的混二甲苯,使用结晶分离技术将大幅度降低分离成本,已经具备了与分子筛吸附分离技术相抗衡的竞争力。对二甲苯生产技术中结晶分离技术的应用将具有良好的市场前景。
4.2.3 甲苯甲醇甲基化制高浓度对二甲苯技术
甲苯甲醇烷基化合成对二甲苯是增产对二甲苯的一条新的工艺路线,为甲苯转化和廉价甲醇利用提供了新的途径。20世纪70年代以来,国内外相继开展以Y分子筛和ZSM-5分子筛催化剂为基础的甲苯选择性烷基化合成研究,特别是对ZSM-5分子筛硅铝比、晶粒大小、Pt,Mg,Sb/碱(土)金属改性及P,Si,B等元素改性和水蒸气处理等对催化剂结构、酸性与催化性能之间的关联进行了大量研究。以Mobil公司采用分子筛硅铝摩尔比为450、970℃蒸汽处理45min的P/HZSM-5催化剂为例,在反应温度600℃、反应压力0.28MPa、WHSV4h-1、n(甲苯)/n(甲醇)/n(水)/n(氢)=2/1/6/6的工艺条件下进行甲基化反应,甲醇转化率为97.8%,甲苯转化率为28.4%,PX选择性为96.8%。反应中不生成苯,副产物很少,主要是C5以下烃类,其质量分数不到1%。
该工艺目前尚未有工业化报道,其关键在于稳定性好、寿命长的工业催化剂研究开发及技术经济性是否具有优势两大问题。最近印度石油化工公司(IPCC)和GTC公司联合报道了所开发的GT-To-lAlkSM甲苯甲醇烷基化工艺技术的新进展,并对200kt/aPX生产装置的技术经济性进行了评价。甲苯烷基化采用固定床反应器和专有的高硅沸石催化剂,在反应温度400-450℃、反应压力0.1-0.5MPa、甲苯与甲醇质量比为1.35/1条件下,PX选择性达到85%以上,催化剂操作周期6-12月,该技术的主要特点:可把所有的重整甲苯直接送至甲苯烷基化单元,与低成本的甲醇共同作为原料生产高浓度PX的芳烃,二甲苯馏分可通过低成本的简单结晶单元,有效回收PX,得到高纯度PX,结晶分离单元建设投资比传统吸附分离单元低得多。此外,副产物苯可忽略不计。每生产1tPX只需耗用1t甲苯(而甲苯选择性歧化工艺中,生产1t PX需耗约2.5t甲苯,副产苯多,B与PX质量比为1.36-1.60)。经200kt/aPX装置技术经济评价,使用原料甲苯2.34Mt/a、甲醇1.73Mt/a,可获得PX浓缩物2.33Mt/a;甲苯与甲醇的价格分别以260美元/t、110美元/t计,年净利润约1900万美元,总投资成本7000万美元左右。
此项技术如与其它芳烃处理装置组合,即由GA-TolAlk甲苯甲醇甲基化技术、GT-TransAlk重方烃烷基转移技术、GT-IsomPX异构化技术和CrystPX结晶技术4套单元加蒸馏单元构成的现代PX生产联合装置,将显示出更大的优越性与灵活性。对于400kt/a PX装置的PX回收方法,与单用传统(吸附分离)混合二甲苯进料装置相比,现代组合的PX回收的投资费用可节省10%,每吨PX的现金成本可减少2.6%,石脑油原料需要量可降低53.8%左右。
目前由于受甲醇价格、过多的废水生成以及维持长周期运转等因素的影响,该技术的工业化前景有待进一步考察。但随着天然气化工的发展以及催化剂技术的进步,该技术具有良好的应用前景。
4.3 工程化研究
随着芳烃联合装置催化技术的发展,装置的规模日益扩大,产品的生产成本要求越来越低,在工艺及分离两个方面都要求进一步开展工程化技术研究。在反应工艺方面,主要的核心是反应器的研究,大型换热设备及装置热联合研究等课题。随着装置的大型化,选择合适的反应器类型以及如何确保气流均匀分布是反应器研究的主要内容。SRIPT在轴向固定床气流均匀分布方面做了深入的研究,并可用于工业设计。大型换热器换热效率的高低在很大程度上决定了整个装置能耗的高低。法国PAKINNOX公司的板式换热器代表着目前的最先进水平,SRIPT在年处理量分别为870kt和1Mt的甲苯歧化装置上已使用了该换热器,预期将大大降低反应器加热炉的负荷。
在产品分离方面,主要集中在结晶分离技术上,Niro/TNO冷冻结晶分离提纯技术代表着该领域的先进水平。该技术是Bremen大学于1993年分别与Niro Process Technology和TNO Institute ofEnviromental Sciences,Energy Technology and Pro-Cess Innovation合作开发的分离提纯技术。与传统冷冻结晶分离提纯技术基于层状冷冻结晶过程不同,Niro/TNO冷冻结晶分离提纯技术基于悬浮态冷冻结晶过程,整体能源消耗降低至传统冷冻结晶过程的10%左右。
目前国内该领域的研究,尚未见有关报道。
5 具有前瞻性的对二甲苯合成新技术的研发
在新的工艺路线方面,Exxon-Mobil公司最近报道了蒸汽裂解副产裂解气中含C4+二烯烃(如环戊二烯、丁二烯、戊二烯、己二烯和甲基环戊二烯等)与C1-C3含氧化合物(如甲醇、二甲醚、乙醇、二乙醚或甲醇与二甲醚混合物等)选择性转化成对二甲苯、乙烯和丙烯的新工艺。催化剂为含有质量分数4.5%P的ZSM-5分子筛(SiO2与Al2O3摩尔比为450),固定床反应器,反应温度430℃,反应压力0.1-MPa,质量空速0.5h-1,原料m(双戊二烯)/m(甲苯)/m(甲醇)/m(水)为1.25/1.25/22.5/75,环戊二烯与甲醇反应,高选择性地转化为对二甲苯,甲醇同样可高选择性地转化为乙烯、丙烯和对二甲苯,双环戊二烯转化率为100%,甲苯转化率为10%,甲醇转化率为20%。产物质量组成为:对二甲苯30%,乙烯25%,丙烯22%,其余为C4+烯烃和除对二甲苯以外的C8+/芳烃。
Exxon-Mobil公司又报道了合成气与甲苯催化甲基化合成对三甲苯的新工艺。采用Cr-Zn-Mg-O负载MgO/HZSM-5组成的催化剂,在原料n(H2)/n(CO)/n(甲苯)=2/1/0.25、反应温度460℃、反应压力0.17MPa、质量空速1.5h-1的条件下,甲苯转化率为26.0%,二甲苯选择性为84.2%,其中对二甲苯选择性为74.5%,催化剂稳定性良好,预计寿命可达4100h。添加金属氧化物的作用是抑制沸石外表面酸中心的形成,降低沸石的狭窄孔道中邻位与间位二甲苯的生成,即降低甲苯在非对位上的烷基化,抑制对二甲苯异构化,从而提高对二甲苯的选择性。
UOP公司最近也报道了以喷雾浸渍法制备的硫酸氧锆为催化剂,液相法非临氢的甲苯歧化与C9A烷基转移的改进工艺。当甲苯原料中含有质量分数30%的1,2,4-三甲苯时,在反应温度160℃、反应压力900kPa、液态空速2.0h-1条件下进行反应,反应160min时,二甲苯收率最高。此时反应产物在线分析结果表明,二甲苯质量分数为17%,三甲苯质量分数为20%。失活的催化剂可以再生。
上述利用副产重烯烃和合成气与甲苯、甲醇选择性转化合成对二甲苯的新工艺研究开发是值得关注的研究动向。
6 结语
由于受下游产品市场的影响,对二甲苯市场将呈现供方市场状态。新建或现有装置扩能将成必然趋势。受石脑油总量的限制,立足现有规模,使用新技术增加混二甲苯,从而增产对二甲苯产量是目前主要的技术手段。使用高乙苯转化率的异构化催化剂、设法提高吸附分离进料中对二甲苯的浓度,是芳烃联合装置扩能的主要途径。甲苯选择性歧化生产对二甲苯是新的技术路线。甲苯择形歧化与苯/C9A烷基转移组合工艺将会有效地降低对二甲苯生产成本,可以大幅度地增产对二甲苯,期待早日实现工业化。重芳烃的利用也将是未来重点研究的技术,力争近期内有新的突破。
Ⅶ 如何实现模拟移动床
师傅,我知道你是谁,楚启玉92年生的8月9号生日。。。。 最佳答案采纳我的吧!!!!
二十世纪九十年代以来模拟移动床色谱(SMBC,Simulated Moving bed chromatography)技术发展很快,该技术最早于60年代出现,由连续逆流循环移动床(TMB)演变而来,其技术原理:在色谱分离中对不同组分进行分离,主要是利用各种组分在色谱柱中的迁移速率不同来完成的。假设A和B两种组分的分离,A和B对固体的吸附力是不同的(其中B比A对固体的吸附力要强,因而B在色谱柱中的迁移速率比A小),这就存在一个合适的速度(介于A、B两种组分迁移速率之间)让固体与溶剂作反向运动,从而使得A向上游移动、B向下游移动,从而完成了A与B的分离,这就是移动床色谱的基本思想。
而SMBC通过液体出入口位置的不断切换,模拟出固定相和流动相相对于进样口的相对循环流动,从而在吸附剂的实际固定床上获得了类似交错流动效应,既可以使分离操作连续进行,又可以获得较大的传质推动力和很高的固定相利用率。SMBC根据其结构特点常可以分为三带、四带和五带系统,最常见的是四带SMBC,其原理图如图1所示。它实现了溶剂的循环和组分的回流,分离效率高,整个床层可分为4个区段:每个区由若干个色谱柱组成,Ⅰ区在洗脱剂(Desorbent)与萃取液(Extract)间,从固相解吸出强吸附组分(Slow Moving Solutes)并使固相吸附剂再生;Ⅱ区在萃取液和进料液(Feed)间,是弱吸附组分(Fast Moving Solutes)的解吸区;Ⅲ区在进料液与萃余液(Raffinate)间,固相吸附强吸附组分;Ⅳ区在萃余液与洗脱液间,固相吸附弱组分,再生洗脱液。
Ⅷ 模拟移动床的介绍
模拟移动床一种利用吸附原理进行液体分离操作的传质设备。它是以逆流连续操作方式,通过变换固定床吸咐设备的物料进出口位置,产生相当于吸附剂连续向下移动,而物料连续向上移动的效果。这种设备的生产能力和分离效率比固定吸附床高,又可避免移动床吸附剂磨损、碎片或粉尘堵塞设备或管道以及固体颗粒缝间的沟流。模拟移动床把固定吸附床分为许多段(常为24段),段内装有吸附剂,段间液体不能直接流通。每段均装有进出口管道(进出两用),由中央控制装置控制其进出。24个进出口中的20个只起段间联系的作用,另四个供四股物料的进入或离出,某一瞬间的物料进出口位置(图1[ 模拟移动床工作原理])把整个吸附床层分成了四个区,各区距离不等长,每段相际传质也不同。如A脱附区液体中含有A与D,此区是用D使A脱附。B脱附区是用 A及D使B脱附。由上述两区之间的出料口所引出的吸附液只含 A与D,而且A的浓度也较大。A吸附区是使原料中A与B分离,因此在A吸附区上部取出的吸余液中不含A而只含B与D。若吸附剂固定不动,则随着时间的推移,固相中被分离组分的浓度将自下而上逐渐变大。模拟移动床则是利用一定的机构(如旋转阀),使四个物料的进出口以与固相浓度的变化同步的速度上移。这样,构成一闭合回路,其总的结果与保持进出口位置不动,而固体吸附剂在吸附器中自上而下移动的效果基本相同。
Ⅸ 什么是制备
1 制备色谱到底是什么?
(1)分析色谱的目的,是分析出混合物中一个(或者几个)纯物质的含量。制备色谱的目的,是从混合物中得到纯物质。
为了加快分离的时间与提高分离的效率,制备色谱的的进样品量很大,导致制备色谱柱子的分离负荷的相应加大,也就必须加大色谱柱填料,增大制备色谱的直径和长度,使用的相对多的流动相。
然而,当色谱柱上样品负载加大的时候,往往导致柱效急剧下降而得不到纯的产品。制备色谱,要解决容量与柱子效果之间的矛盾,对重现性也要考虑。从经济上来说。制备色谱要争取少用填料,少用溶剂,要尽可能多的得到产品。
(2)样品的前处理:
制备色谱柱子由于处理的样品多,比分析柱子更容易受污染,所以,必要的前处理就显得非常的必要。萃取、过滤、结晶、固相萃取等简单的分离方法,如果用得上,而且还不是很麻烦,就要尽可能多的采用以去掉杂质。
(3)制备色谱柱的材质及其特点
下面介绍一下,制备色谱柱常用的材质及其特点。
各种规格的玻璃柱子在实验室里头很容易得到,而且价格低廉,但玻璃柱子致命的弱点是它能承受的压力很小,且非常容易破碎。当由于压力太小而导致流动相流速很慢的时候,高位液面或加高压空气(或者氮气)的采用是一个简单的解决办法。在底下加真空,也能在一定程度上解决这个问题。
不锈钢柱子具有良好的耐腐蚀、抗压力性能,但其价格相对很贵。如果,只有很小的分离任务且经费也允许,市面上直径为1cm的小型制备柱就是首选。
有机玻璃柱子也能抗压力耐腐蚀,相对不锈钢柱子而言,它是半透明的,可以看到液体的运行状态,对有色的物质其特点就更为突出。
(4)固定相的选择
硅胶、键合固定相(如C18)、离子交换树脂 、聚酰胺、 氧化铝、 凝胶等都可以作为色谱柱的填料。 有不少文献报道,对填料可以进行一下处理提高了分离效果,如,对硅胶进行的硝酸银(或缓冲液)处理。
(5)装柱方法的选择 根据固定相颗粒度和柱子的尺寸,采用不同的装柱方法,往往装填越好分离效果越好。装柱效果跟填料的颗粒度关系很大,颗粒度的减少会导致装柱的难度。一般来说,颗粒直径小于20-30um的固定相采用湿法装填。所谓“敲击-装填”技术适用于颗粒直径大于25um的固定相。湿法的目的是迫使相对稀松的 固定相悬浆以高速装入色谱柱子,从而减少空隙的形成。然而,当柱直径大于20mm,所加压力为30-40bar时,高压悬浆装填技术就变得十分复杂。为将小颗粒固定相装入更大得制备型色谱柱,可采用柱长压缩技术。这种方法,先将固定相悬浆(或偶尔是干填充物)装入柱中加压,利用物理方法将其压紧。压紧的方法有两种:径向压缩和轴向压缩。 湿法装柱需要一定的设备,在柱子填完后,应用有柱效的测量,对柱效低的柱子应该重填。
(6)流动相的选择
除了和分析色谱同样的考虑外,在选用流动相时,要考虑色谱分离后面加有旋转蒸发等二次分离操作。一般来说,不宜采用高毒性溶剂,对多元溶剂要尽可能的少用。
如果产品中含有大量溶剂,溶剂的纯度也要考虑在其中。
(7)加样的方法
可以采用以下方法之一进样。-用注射器进样-用旋转阀进样-通过六通阀进样-通过主泵进样-通过辅泵进样-固体上样
(8) 泵的选用
生产制备色谱泵的厂商很多。根据有无脉冲、能承受的最大压力、控制的精度、售后服务等来选择泵。
(9)检测器的选用
一般的分析池的最大允许流速仅为5 mL/min 或者10mL/min。而专门的制备池的最大允许流速可为150mL/min。有时,采用旁路分离管,将少量流体导入分析池进行检测,是一个不错的办法,但其浓度的误差会相对较大。
(10)组分保留时间的估计
用分析柱子在同等色谱条件下(同样的固定相和流动相)测定保留时间后,按照单一组分的线流速(不是体积流速)一定,通过计算可以知道组分的大致保留时间区域。
分析谱图的峰形状,对确定保留时间也有很大的参考价值。
(11)产品的收集
手工馏分收集费时费力,自动馏分收集器有很大的方便。许多实验室和工厂都采用了馏分收集器。
(12)超载、边缘切割、中心切割、放大技术与非线性效用
在制备色谱中,因为没有必要达到分析色谱那样的分离度,可以在一定范围内大大加大进样的浓度和体积。在做分离的时候,也有一些分析色谱的时候,不能用到的技巧。因为篇幅关系,不在这里叙述。
(13)柱转换技术
通过接头或者阀门,实现柱子的简单延长,或者比较方便地实现对其中一个(或几个)组分的精制。
(14)比较新的制备色谱技术
模拟移动床可以连续进样,并可以利用边缘切割效用,而且采用了柱切换技术,能更好的利用溶剂和填料,已经应用于工业化生产。其理论和技术也日益完善。
迎头色谱、超临界流体色谱、逆流色谱环形色谱、气相制备色谱等在科研和工业生产中也得到了应用。
参考资料:http://www.instrument.com.cn/bbs/shtml/20051103/267391/