『壹』 求教:高岭土最具有工业价值的品位是什么
高岭土重要的品位是白度,分自然白度和烧后白度,白度90度以上是高品位的产品,用在不同的行业还有一些指标,如陶瓷上有铝含量的指标,成分及纯度的指标,用在造纸、涂料、化工等行业又有不同的要求,只知道这么多。
『贰』 高岭土矿床地质勘查与评价
一、一般工业指标
根据中华人民共和国地质矿产行业标准《高岭土、膨润土、耐火粘土矿产地质勘查规范》(DZ/T 0206-2002),高岭土的一般工业指标如表3-12所示。
表3-12 高岭土矿一般工业指标
根据矿石的工业指标,最小可采厚度、最大夹石剔除厚度定出高岭土的不同品位。表3-13~表3-15为某些矿区高岭土品位的划分情况。还应指出,评定品位时,对于难选矿石,采用原矿评价,对于易选矿石,则采用精矿评价。
表3-13 湖南界牌高岭土矿床不同品位的划分
续表
表3-14 浙江温州高岭土矿床不同品位的划分
表3-15 江西墨子膏岭土矿床不同品位的划分
二、矿床勘探类型的划分
(一)勘查类型划分依据
勘查类型划分主要是根据占矿床矿产资源/储量70%以上的主矿体(一个或几个矿体)的形态、规模等特征而定。
1.矿体(层)延展规模
大型:延展面积≥0.2 km2。
中型:延展面积0.2~0.03 km2。
小型:延展面积<0.03 km2。
2.矿体(层)形态复杂程度
规则:呈层状、似层状,边界规则。
较规则:呈层状、似层状、透镜状,边界较规则。
不规则:呈透镜状、扁豆状、囊巢状、脉状,边界不规则。
3.矿体(层)厚度稳定程度
稳定:厚度变化系数≤40%,厚度变化有规律。
较稳定:厚度变化系数40%~70%,厚度变化较有规律。
不稳定:厚度变化系数>70%,厚度变化规律不明显。
4.矿体(层)内部结构复杂程度
简单:矿石质量稳定或变化有规律,线或面夹石率≤10%。
中等:矿石质量较稳定,线或面夹石率10%~20%。
复杂:矿石质量不稳定,线或面夹石率>20%。
5.构造复杂程度
简单:矿体(层)呈单斜或简单的开阔向、背斜;无较大的断裂构造及脉岩,对矿体形态影响小。
中等:矿体(层)有次一级褶曲或局部较紧密褶曲;有少数较大断裂及脉岩切割,对矿体(层)形态有一定影响。
复杂:断层、褶曲或脉岩发育,矿体(层)受到严重影响。
(二)勘查类型
按勘查类型划分依据,根据中华人民共和国地质矿产行业标准《高岭土、膨润土、耐火粘土矿产地质勘查规范》(DZ/T 0206-2002),将矿床划分为三个勘查类型。
Ⅰ勘查类型:矿体(层)延展规模大型,形态规则,厚度稳定,内部结构、地质构造简单。例如,广东茂名高岭土矿床、广西宁明膨润土矿床、山东小口山耐火粘土矿床。
Ⅱ勘查类型:矿体(层)延展规模中—大型,形态较规则,厚度较稳定,内部结构、地质特征简单至较简单。例如,湖南界牌、江苏观山高岭土矿床。
Ⅲ勘查类型:矿体(层)延展规模中—小型,形态较规则至不规则,厚度较稳定至不稳定,内部结构、地质构造较简单至复杂。例如,江苏阳西、沙礅头、四川叙永高岭土矿床。
三、勘查工程间距
勘查工程按不同勘查阶段,根据矿床地质特征和矿山建设需要部署。普查阶段勘查工程部署应考虑能为后续勘查工作利用。高岭土矿床勘查工程间距如表3-16所示。
表3-16 高岭土矿床勘查工程间距
四、矿床规模的划分
根据中华人民共和国地质矿产行业标准《高岭土、膨润土、耐火粘土矿产地质勘查规范》(DZ/T 0206—2002),高岭土矿床的规模按矿产资源和储量规模的关系进行划分,如表3-17所示。
表3-17 矿产资源/储量规模
五、勘探技术手段的选择与布置要求
(一)地形、地质测量
预查、普查阶段:收集编制或填制区域地质简图,矿区图件、比例尺不做规定。
详查、勘探阶段:收集或编制区域地质图,比例尺(1∶2万)~(1:5万),矿床地形、地质图,比例尺(1:1000)~(1:2000)。
(二)物探工作
具备物探工作条件的,应结合探矿工程,采取适用的物探方法,了解矿体分布范围、覆盖层的厚度、与成矿有关的较大断层、岩体、岩脉、岩溶的产状与分布以及矿床水文地质、工程地质条件等。
(三)探矿工程
1.探槽、浅井和取样钻
控制矿体的工程应揭穿矿体顶底板围岩界线,探槽、浅井应挖至新鲜基岩内。
2.钻探工程
高岭土的勘探一般以钻探为主,以探槽、浅井(包括小圆井和带岔浅井)、小平硐等轻型坑探工程为辅,对某些埋藏深、厚度不大的矿体,当经济可行时可以以浅井为主要探矿手段。对露天采场、老硐和矿山坑道资料应充分利用。
不同成因类型的高岭土矿床的勘探网度是不同的,并且是由其储量的级别而定,如表3-18所示。
表3-18 不同成因类型的高岭土矿床的勘探网度和勘探工程
不过,对于同一高岭土的矿床,可根据矿石均匀程度,适当变化勘探网度。钻孔一般布置在勘探线上,钻孔竣工后应测定孔位坐标。
矿心采取率以及矿层上下3 ~5 m的顶底板岩心采取率不得低于80%,一般岩心采取率不得低于70%。对厚度较大的矿体,矿心采取率要求连续5~10 m 段平均采取率不低于80%、分层岩心采取率不低于70%。
钻孔穿矿孔径以满足各种样品测试的要求为准。地下开采施工钻孔必须严格封孔,对封孔质量应采取10%~20%的随机抽样透孔检查,合格率要求达到100%。对采用泥浆钻进时,矿心采取样品必须剥离泥皮。钻探工程质量要求应执行《岩心钻探规程》规定。
六、样品的采集、加工与测试
(一)样品的采集
样品应按矿石类型、品级分别采取。刻槽法采集样品规格(10cm ×5cm)~(10cm × 3cm)。钻孔矿心等采集样品常用矿心二分劈开法取其一半作为样品。样品长度一般1~2 m。
采集样品时,应避免外来物质(包括铁质)混入,其中夹石、岩块含量应予以剔除,称量并计算含量比例,估算矿产资源/储量时扣除。
(二)样品的加工
原矿样品加工缩分公式采用切乔特公式:
Q=Kd2
式中:Q— 缩—分时取得的最小可靠质量,kg;
K——缩分系数;
d——样品碾碎后最大颗粒的直径,mm。
K值为0.1~0.2,一般取0.1。K 表示碎样过程中,样品损失率:全过程累计损失率<5%,每次缩分误差<3%。
高岭土样品粒度应<0.15 mm(100目)。淘洗精矿样品加工,最终筛目要求为0.043 mm(325目)。当需获取<2μm 粒级精矿时,可采用沉降法或其他方法分离。当淘洗精矿或精矿样品尾砂可综合利用时可以进一步加工。严禁使用铁质器件加工。对用做涂料的矿石,加工过程中不得使用絮凝剂。
(三)样品化学分析、物化性能测试
1.基本分析
高岭土分析项目应根据矿床实际和主要用途确定。一般为Al2O3,Fe2O3,TiO2,当w(TiO2)<0.3%,且分布稳定时可不做基本分析,列入组合分析项目;当SO3或K2O, Na2O,CaO,MgO,FeO质量分数高影响工业利用,或SiO2与Al2O3质量分数不呈明显消长关系时,列入基本分析项目(FeO可不做单独分析,仅分析TFe2O3);当矿床按淘洗精矿勘查时,应增做淘洗率分析。
2.组合分析
高岭土:以原矿工业指标评价,样品取自基本分析样副样,按采样长度加权组合,如以淘洗精矿工业指标圈矿时,采用淘洗精矿副样,还要组合适量的尾砂样品,按粒级(或不按粒级)组合。组合分析项目通常包括:SiO2, MgO,CaO,Na2O,K2O,TSO3(全硫矸),灼失量7项。应根据矿床实际适当增减分析项目,基本分析已做的项目一般可不做组合分析。
3.化学多元素分析、光谱半定量分析
高岭土应对原矿、淘洗精矿做化学多元素分析,必要时做尾矿化学多元素分析。样品一般从基本分析或组合分析副样中按采样长度加权组合。一般每一工业类型和品级做1~2件。分析项目包括基本分析、组合分析。
(四)化学分析质量检查
1.化学分析质量检查
高岭土基本分析、组合分析质量检查试样应按矿石类型、品级从基本分析副样中抽取。内部检查的数量应占样品总数的7%~10%,外部检查数量应占样品总数的3%~5%。基本分析中含有淘洗率、白度、黏度等项目时,其测定质量亦应定期进行检查,检查方式采用平行双份测定、外检、内检等,并需注意对测试仪器定期进行校验。
2.检查分析允许相对双差要求如下
非金属矿产地质与勘查评价
式中:Y——计算相对双差值,%;
c——修正系数;
X——测定结果浓度值,%。
检查分析修正系数见表3-19。
表3-19 检查分析修正系数
3.系统误差显著性t检验
非金属矿产地质与勘查评价
式中:t— 系—统误差显著性检验;
若t计算值≥临界值t0.05,n-1,判为此组样品系统误差存在显著性;否则不显著。
(五)岩石物理技术性能测试样晶的采集与试验
高岭土岩石物理技术性能测试样品按每一工业类型、品级分别采集2~3件样品。
样品一般选择少数代表性钻孔或其他工程,按类型、品级组合。送测样品不得加工。
样品质量一般10 kg。当需做制瓷、纸张涂布等试验时,一般为数十至数百千克,或与试验单位商定。
测试项目,一般基本测定下列五项:
1)粒度组成<76μm,<43μm,<10μm,<5μm,<2μm。
2)白度:自然白度、烧成白度。
3)可塑性。
4)干燥收缩率。
5)耐火度。
高岭土矿石矿物鉴定样按类型、品级采集两件样品。
应根据相应用途增减某些测试项目。
七、高岭土矿床经济技术评价要点
为了寻找新的高岭土矿床,必须以不同类型高岭土矿床的控矿因素为找矿前提,在有利于成矿的地带追寻找矿标志。由于中国是一个高岭土开发历史悠久的国家出此,古瓷窑和老硐的存在,也是一种重要的找矿标志。传统上对风化型矿床开采较多,大部分高岭土矿床分布在中国南方和东南,在这些地区要注意一些蚀变型、沉积型高岭土矿床的找矿。在北方,特别是西北、东北以及有待开发的边远地区要特别注意寻找含煤岩系中的以及其他类型的高岭土矿床。
由于高岭土矿床本身的特点,在勘探工作中尚需特别注意一些问题。
首先,高岭土矿体大多较小而形态不规则,往往不是单个出现,因此,在布置勘探工程时,要因地而异,不必拘泥于一般勘探网线的做法。
其次,大部分高岭土矿床是地方简易采掘,一般只需进行针对性的地质工作,以大致圈出可采矿体,确定质量和估计投资风险即可,不宜布置过多的勘探工程。只有准备纳入国家或省区基建项目,并经对比选定和技术经济论证认为可采,准备正规设计开发的储量百万吨以上或更多的大、中型矿床才需进行工作量较多的勘探工作。
第三,要考虑矿石的多种用途的可能性。高岭土的应用领域不同,对其质量要求截然不同。在化学成分方面,对造纸涂料、无线电瓷、耐火坩埚等要求高岭土的Al2O3和SiO2接近高岭石的理论值,日用陶瓷、建筑卫生陶瓷、白水泥原料、橡胶和塑料的填充剂对高岭土的Al2O3含量要求可适当放低,SiO2含量可酌情高些。对Fe2O3,TiO2,SO3等有害成分,亦有不同允许含量。在工艺性能方面,各应用领域要求的侧重点更为明显。如造纸涂料主要要求高的白度、低的黏度及细的粒度;陶瓷工业要求有良好的可塑性、成型性能和烧成白度;耐火材料要求有高的耐火度;搪瓷工业要求有良好的悬浮性等。实际勘探中可据不同工业用途对矿石质量的要求,列出几种对储量及开采范围的圈算结果。
第四,还要注意矿床的综合评价和综合利用,如风化矿床水力选矿后的尾矿可考虏做玻璃原料或建筑材料用。
第五,在勘探工作中,除对高岭土矿石的矿物成分、化学成分、自然类型做详细研究外,还要对其工艺物理性能进行实验室测定,同时对含矿率、可选性等进行研究。另外,还要进行一些有针对性的半工业试验,如对做陶瓷原料用的高岭土要做制陶试验,对造纸涂料用高岭土还要研究其矿物形态和做涂布试验。
第六,我国高岭土矿以单一矿产为主,共生矿产有明矾石、黄铁矿、叶蜡石、膨润土、钾长石、瓷石、石英岩、铝土矿、煤、贵金属、稀有分散元素等,在选矿中尽可能回收利用伴生矿物(如用振动筛回收云母、综合利用明矾石)和选矿后的尾砂(石英砂、长石石英砂、钾长石砂)以及尾矿中的副矿物(如铌铁矿、锆石、磷灰石),以增加矿山经济效益。
『叁』 高岭土 品位
优质高龄土,适合做薄胎瓷器。 内蒙的矿不太值钱,运输的成本是一回事,高龄土在我国并不缺,铝、铁的含量太高了,高端的陶瓷难做。
『肆』 现在高岭土的价格是多少啊
需要看你的各项指标,一般的土用来做陶瓷用在600元一吨,做胶水行业可达到1600元一吨,做橡胶添加材料用可达到3500元一吨,做石化行业用可达到2000元一吨,做耐火材料用可达到650元一吨。如果只是出售原矿,看品质情况,一般产品在150元一吨到300元一吨之间。
『伍』 高岭土的品质
提纯做造纸填料
『陆』 高岭土的应用现状
随着科学技术的发展,高岭土以其独特的晶体结构和具有良好的粒度、可塑性、烧结性、电绝缘性、化学稳定性等许多优异的性能,而广泛应用于陶瓷、建筑材料、造纸、橡胶、塑料、涂料、石油化工、环境保护、冶金工业、新材料等几十个行业。
一、在陶瓷工业中的应用
在我国,高岭土在陶瓷工业中的消耗量约占其产量的50%以上,居各工业部门之首。高岭土在制瓷中的作用主要有2个方面:一是作制瓷的配料;其二是在瓷坯成型过程中作为其他矿物配料(如石英、长石等)的粘结剂。因此,陶瓷工业对高岭石粘土的要求首先是它的化学成分,即Fe2O3、TiO2、SO3等有害组分要极低,SiO2/Al2O3比例要适当;其次是粘结性和可塑性,一般说来,高岭石结晶好、颗粒粗,其可塑性和粘结性低。但经剥片后其性能则将改变。
二、在造纸工业中的应用
由于高岭石粘土粒度小,剥片后具良好的片状、鳞片状形态,片径/厚度比值大,化学性质稳定等,因此,被用作造纸填料和纸张涂层,提高纸张光泽度、充填纸张纤维之间的空隙、提高不透明度、增加平滑度及纸张密度等目的。而且,高岭石粘土比纸浆便宜,能有效地降低造纸费用。高岭石对纸中其他成分不起反应,能较好地保留在纸张纤维中间,适于大量使用。造纸工业对高岭石粘土的要求主要是细度以及杂质含量。一般说来,用于造纸的高岭石粘土须经特殊选矿工艺选出粒度<2μm的部分,或是经过超细磨(剥片)对其进行加工才能达到粒度要求。另外,高岭石粘土中长石、石英含量越低,带色杂质(如有机质、Fe2O3等)越少,则质量越好。对用作铜板纸的涂布级片状高岭石的质量要求较高,除晶粒呈片状外,还要求白度大于85.80%以上的粒度为2μm,Fe2O3<0.5%。
三、在橡胶、塑料工业中的应用
在塑料、橡胶等现代高分子材料中添加高岭土等非金属矿填料,不仅可降低橡胶、塑料等高分子材料的成本,更重要的是能够提高材料的刚性、尺寸稳定性,并赋予材料某些特殊的物化性能,如抗压、抗冲击、耐腐蚀、阻燃、绝缘等[17]。高岭土在填料中的应用主要有两方面:一方面,采用高岭土为原料,通过酸洗除杂、焙烧活化、两段酸溶的方法可制取白炭黑[18];另一方面,将煤系高岭土提纯、漂白、超细、煅烧以及表面改性后,制备成各种塑料、橡胶等填料,也可以达到半补强的效果[19]。
四、在涂料工业中的应用
目前,用高岭土作为涂料工业中的添加剂,有助于满足对涂料提出的日益严格的性能和耐久性方面的许多要求。其作用是:改善涂料体系贮存稳定性,改善涂料的涂刷性,改善涂层的抗吸潮性及抗冲击等机械性能,改善颜料的抗浮色和发花性[20]。当要求制备低VOC、高固体涂料,而要求更薄和无疵平滑、光亮的涂膜时,尤其如此。高岭土添加剂的规格品种,随着开发品种的增加也将不断增加,它可适应任何类型的涂料体系,从底漆到面漆,任何固体份、任何光泽和任何涂膜厚度。因此,高岭土添加剂是今天的功能涂料的多功能添加剂。
五、在石油化学工业中的应用
在石油化工方面,随着世界原油的重质化和劣质化,在催化裂化过程中,掺炼重油、渣油已成为炼油厂普遍采用的加工方式。由于重油中含较多的碳质、沥青质和重金属,这就要求催化剂具有较高的基质活性、较强的抗重金属污染能力、较好的催化活性和选择性。因沸石催化剂具有活性高、选择性好、稳定性好以及强抗毒能力等特点,已逐步取代其他催化材料,成为石油化工技术的核心[21]。以高岭土为原料合成的沸石分子筛和催化剂,在沸石晶粒大小、水热稳定性、活性和抗重金属性能等方面具有独特的特点,且由于高岭土价格低廉、合成沸石成本低,因此得到了广泛的研究[22]。到目前为止,以高岭土为原料,成功制备出Y型[23]、X型[24]、ZSM-5型沸石分子筛[25],用于催化裂化催化剂,具有很好的重油转化能力和良好的裂化产物选择性。
六、在环境保护中的应用
近年来,随着全世界对环境问题的日益重视,环境材料的研究与开发显得非常活跃。特别是运用廉价矿物原料用来处理“三废”已成为研究热点之一。采用高岭土(包括非煤建造的和含煤建造的高岭土)成功制备出的分子筛和无机或无机-有机复合絮凝剂[26~28],可用于改善水质,处理各种生活和工业废水,吸附和清除工厂废气中的H2S、CO2、SO2等气体[29~30],处理核废料[31]等。
七、在冶金工业中的应用
高岭石粘土具有很高的耐火度,可用作冶金工业及玻璃工业的耐火材料,制作各种高温作业的砌体,如各种形状的耐火砖、绝缘砖、硅质砖、各种熔炼炉和热风炉的炉衬砖。
八、在新材料中的应用
1.高岭土有机插层材料
高岭石层间作用力较强,不含可交换性阳离子,无膨胀性,与其他层状粘土矿物相比,较难与有机化合物发生插层反应。仅有一些强极性有机小分子,如二甲基亚砜(DMSO)、甲酰胺(FA)、N-甲基甲酰胺(NMF)、脲(Urea)、联氨(hydrazine)等可以直接插入到高岭石层间。而其他有机分子则可以采用“置换插层法”,即置换预插层在高岭石层间的上述有机小分子而制备相应的有机插层复合物。大量研究表明,高岭土经过置换插层制备的高岭土-甲醇有机复合物,可以作为进一步置换插层的前驱体,具有广泛的通用性。由此可以制备出多种有机插层复合物。高岭土多次插层—去插层(脱嵌)后,具有较高的反应活性,能够轻易地插入二价碱土金属和过渡金属等,用这种方法有望制备出高活性的催化剂。
2.层柱高岭土
层柱粘土矿物(Pillared Interlayer Clay,简称PILC),也称交联粘土或层柱分子筛,是通过离子交换的方式把一些化合物插入到粘土矿物的层间域中,并形成分子级别的支柱,而制成的一类孔径大、分布规则的新型分子水平的纳米复合材料。这类材料可望应用于石油催化、精细化工、环保等领域。天津大学孔浩[3]研究了用煤系高岭土制备层柱分子筛的方法:首先使用多种阳离子对高岭土极性层间域进行离子交换,然后使用醋酸钾作挟带剂将聚合羟基锆离子插入高岭土层间,制备了层柱高岭土。层柱高岭土对正庚烷裂化反应的催化效果表明,其初始催化活性比原土显著提高,部分与Y型分子筛性能相当;而且具有较大的比表面积和大量的网孔状构造,可以在择形催化方面获得应用。
3.高岭土制备赛隆材料
赛隆(Sialon)是由硅(Si)、铝(Al)、氧(O)、氮(N)组成的化合物,它是Si3N4中的Si和N被Al或(Al+M)(M为金属离子)及O置换所形成的一大类固溶体的总称。α-Sialon主晶相晶粒呈等轴状,具有很高的硬度和耐磨性。β-Sialon主晶相晶粒呈长柱状,具有较好的强度及韧性。O-Sialon以正斜方结构的Si3N2O为结构基础,具有很好的抗氧化性[32]。由于Sialon材料具有优越的力学性能、耐高温性能及化学稳定性等,在冶金、航空、化工机械、医学等方面显现出很好的应用前景。在粘土矿物中,高岭土为合成Sialon材料的首选天然原料[33~37],其合成方法为将高岭土粉末与石墨粉按一定配比混合,加入一定的烧结助剂,在氮气氛中加热到1400℃以上反应生成。调节原料中的硅铝比,可得到不同种类的Sialon材料。加入锆英石、刚玉等成分,可以得到复相材料,使材料性能更加优化[38~41]。
4.高岭土制备地聚物材料
地聚物材料(geopolymeric materials)是以偏高岭土、碱激发剂为主要原料,在20~120℃的低温条件下成形硬化,通过化学反应得到的具有与陶瓷性能相似的一种新材料[42]。地聚物是由无机的硅氧四面体与铝氧四面体聚合而成沸石及类沸石相,其产物以离子键和共价键为主。地聚物兼有有机高聚物、陶瓷、水泥的特点,又不同于这些材料,它具有许多独特的材料性能,而且具有原材料丰富、工艺简单、价格低廉、节约能源等优点,可用作固封有毒化学废料和放射性元素的有效胶凝材料、建筑结构材料、阻燃耐高温建筑装饰材料、耐火保温材料等。
5.高岭土负载催化剂用于合成碳微球
富勒烯和同组的Cn,以及碳纳米管、碳纳米纤维、碳洋葱、碳微球等是碳材料中研究的热点。碳微球的合成常常需要昂贵的设备和高温高压的反应条件,而Miao[43]等人用高岭土负载过渡元素(Fe、Co、Ni、Cu)作催化剂,采用催化化学气相沉积法(CCVD)可以低成本大规模地合成碳微球。他们将高岭土磨细过100目筛,按1∶1的比例将过渡元素的盐与高岭土加水混合成浆状,强烈搅拌10min,然后涂抹到陶瓷板或高岭土板的表面,空气中60℃下烘干。将负载催化剂的板片置于炉内,氮气保护下用乙炔(C2H2)气体在650℃以上催化热分解30min,即可制得高纯度的碳微球。制备的碳微球的粒径为400~2000nm,由未封闭的层间距为0.33~0.35nm的石墨层组成。这种产物在氮气氛中500℃以下具有良好的热稳定性。
6.制备其他新材料
以高岭土为原料,还可以制备莫来石复合纳米晶[44~45]、聚癸二酰癸二胺(PA1010)/高岭土杂化材料[46]、高岭土-MBT复合材料[47]、高岭土-丙烯酰胺系超吸水性复合材料[48]、超高分子量聚乙烯/高岭土(UHMWPE/Kaolin)复合材料[49]、高岭土-聚丙烯酸钠高吸水性复合树脂[50]、HDPE/高岭土复合材料[51]、高岭土/PET纳米复合材料[52]、丙烯酸/淀粉/高岭土复合高吸水树脂[53]等。新材料的制备拓宽了高岭土的用途,也增加了产品的高科技含量,提高产品档次,能取得更好的经济效益。
九、含煤建造沉积高岭土的特殊应用范围
由于煤系地层沉积环境和沉积物组合的特殊性,含煤建造沉积高岭土(以下简称煤矸石)虽然属于传统意义的固体废渣,但在现代科学技术条件下却具有特殊的明显的资源性特征[54],除了上述提及的高岭土的用途之外,还具有其一些特殊的用途,具体表现在以下诸方面:
1.煤矸石为重要的低热值能源
煤矸石通常含煤及其他可燃有机物。这些煤及其他可燃有机物随成因差别可呈浸染状、丝带状、条带状、碎粒状、细脉状、不规则脉状、团块状或其他复杂形态分布于煤矸石内。矸石中所含的煤及其他可燃有机物除部分可进行直接破碎选煤外,还可取代其他燃料整体用于发电[55]、供热或制作煤矸石内燃砖,并以整体低热值能源更具有资源价值和开发利用价值。
2.煤矸石是某些非金属、金属矿产资源的重要来源
因为煤系地层沉积环境的特殊性,与之相伴的非金属矿产主要有高岭土、耐火粘土、高铝粘土和硫铁矿等,部分还有膨润土、硅藻土、石墨、油页岩、海泡石、重晶石、石灰石等非金属矿产。尤以高岭土、耐火粘土、高铝粘土和硫铁矿在煤矸石内分布普遍,资源总量规模巨大,最具有资源价值的普遍性。金属矿产主要为铝土矿,其次为锰矿和铁矿。煤矸石型铝土矿资源主要为一水铝石,在全国许多地区所产煤田均有出现,尤其在河南和山西的大规模煤田呈层分布,储量集中,除可成层独立开采外,也是煤矸石的重要组成部分,具有综合利用价值。
3.煤矸石是某些高价值稀有分散元素的重要来源
某些类型煤矸石是钒、镓和锗等稀散元素的重要载体,也是这些资源的重要来源。据资料介绍,钒主要富集在石煤内,其钒储量比例是全球其他钒资源储量的5倍。我国约有40座煤矿山的煤含锗达到工业品位,而煤炭内镓的分布普遍含量很低,但其富集程度显著高于其他地质体,也是镓工业利用的主要来源。因为这些元素特殊的地球化学性质,他们往往以有机配位化合物、有机物吸附和/或粘土吸附形式富集于含煤沉积体系。研究结果表明,煤系地层内部这些元素的含量分布与铝含量具有密切的正相关关系[56]。由此可见,除煤层外,它们还会在富含粘土、煤炭及其他有机物的煤层顶、底板和夹层富集,使得部分煤矸石具有回收利用的这些元素价值。特别是镓和锗,煤矸石为其资源来源的重要组成部分。
4.煤矸石是路基材料的重要来源
将煤矸石作为道路基层材料用于筑路工程,具有明显优势[57~58],一是对煤矸石的种类和品质没有特殊的要求,对有害成分含量的限制不严,适用于多种类型煤矸石;二是煤矸石在道路工程中的应用具有耗渣量大,无需进行特殊处理及特殊技术手段的优点,是一种有效地利用煤炭工业废料和减少环境污染的有效途径。既解决了大量用土与取土土源受限制的矛盾,又解决了煤矸石占用土地及污染环境问题,同时还降低了筑路成本,是兼具经济效益和社会效益的资源利用途径,因此,在我国产煤地区已得到广泛地应用。
5.部分煤矸石是新型肥料或土壤改良剂
国内外许多研究表明,部分类型的煤矸石含有大量的有机质和丰富的植物生长所需的微量元素(如C、Ca、Mg、Zn、Cu、稀土元素等),同时富含炭质和粘土矿物,经活化处理后可以成为携带固氮、解磷、解钾等微生物的理想原料基质和载体,用作农田肥料或土壤改良剂[59~60]。施于田间可以增强土壤疏松、透气能力,改善土壤结构,提高土壤肥力和肥效,起到一定的增产效果。用煤矸石制取新型肥料或土壤改良剂,煤矸石消耗量大,有较好的经济效益,是煤矸石综合利用的发展方向之一。
『柒』 中国高岭土的分布区域
目前我国高岭土矿点有700多处,对200处矿点探明储量为30亿吨,矿点较为分散。其中煤系高岭土16.7亿吨,主要分布在我国北方的东北、西北的石炭一二叠纪煤系中,以煤层中夹矸、顶底板或单独矿层形式存在。
我国是产煤大国,基本上大型煤矿都伴生有煤系高岭土,因而煤系高岭土储量十分丰富。非煤系高岭土1996年探明工业储量14.32亿吨。
与其它非金属资源相比,高岭土不属于我国的优势资源,如按人均算则更为短缺。而且我国高岭土资源的分布比较分散,品位不高,大多数为煤系高岭土(国外很少),需要经过煅烧或改性,用于造纸涂布有天然的局限性。
而且煤系高岭土由于属于煤的伴生矿,难以大规模开采利用。在我国,非煤系高岭土与煤系高岭土储量相当,但绝大多数为管状高岭土,粘度大,不能用于造纸涂布。
据目前所了解资料,只有广东、广西、河北沙河的高岭土资源可以开发用于造纸涂料,因此资源十分宝贵。河北沙河在90年代中后期曾在国内造纸涂料市场与茂名高岭土有过激烈竞争,但目前已经由于资源不足,逐渐萎缩。
『捌』 高岭土作用有哪些都用在哪些行业领域
作用:
1、陶瓷不仅对高岭土的可塑性、结合性、干燥收缩、干燥强度、烧结收缩、烧结性质、耐火度及烧后白度等有严格要求,而且涉及到化学特性,特别是铁、钛、铜、铬、锰等致色元素的存在,使烧后白度降低,产生斑点。
2、具有可塑性,湿土能塑成各种形状而不致破碎,并能长期保持不变。
其主要用途包括:
1、用于陶瓷工业。高岭土主要用作陶瓷原料,用于制作各类陶瓷;
2、用于耐火材料及水泥工业。主要得益于高岭土较好的耐火性能,品位较高的高岭土可用于制作光学玻璃、玻璃纤维用坩埚及实验室用坩埚,纯度较低的高岭土可用于制作耐火砖、耐火泥等耐火材料;
3、用于造纸行业。高岭土作为纸张的填料,可大幅提高纸张的白度和平滑度;
4、用于橡胶行业。高岭土用作橡胶的补强剂和填充剂,可提高橡胶的强度及耐酸性能;
5、用于石化工业。高岭土可制成高效吸附剂合成化工用分子筛,还可用作石油裂解的催化剂;
6、应用于医药纺织工业;
7、用于国防尖端技术领域。例如:原子反应堆、喷气式飞机等。
(8)高品位高岭土市场调查扩展阅读:
高岭土是自然界中普遍存在的一种非金属矿,过去一般用于生产陶瓷,耐火材科以及少量掺入塑料,橡胶中怍填料.随着国民经济各领域的日益发展,人们越来越重视高蛉土的深度加工,因为这样不仅可以获取新的具有特殊性能的材料,而且还可提高经济效益.对高岭土进行深加工舳方法之一。
即将巳淘洗和韧步烘干磨耪的高岭土进一步加热,焙烧,脱水,使其变成偏高岭土,用作塑料电缆科的填料,以提高电缆包皮的绝缘性能。常用的鞋类橡胶填充剂主要有有机填充剂和无机填充剂两种,前者包括再生胶和回收料等,
后者包括白炭黑、碳酸钙、钛白粉、碳酸镁、氧化镁、炭黑和锌氧粉等。高岭土是近几年开发的一种新型橡胶制品填充剂。
『玖』 请教这种高岭土成分如何想挖掘。不知道有用不
这种品位的高岭土在陶瓷行业不好用,主要是Fe2O3和
TiO2含量太高,影响其白度,你可以试烧一下,我估计烧成白度就在50度左右。在陶瓷行业一般做基料,大概是20--30元/吨。如果用水洗除砂(SiO2)后,其
Fe2O3将会上升至1.0以上,TiO2也会随之升高,Al2O3+
TiO2高达2以上,所以不宜做陶瓷原料,考虑其SiO2+Al2O3尚可以,宜做磨料
例如刹车片
纱轮砂布之类或低档次的耐火材料等。
对于这种高不成低不就的高岭土,我建议暂且放弃吧。我有些做高岭土深加工的理论和实践经验可以交流,我联系电话即用户名。
『拾』 我国高岭土的分布
主要集中分布在广东,陕西,福建,江西,湖南和江苏六省占全国总储量的84.55%;含煤建造高岭土(高岭岩)储量占世界首位,探明储量为14.42亿吨,主要分布在山西大同,怀仁,朔州,内蒙古准格尔,乌达,安徽淮北,陕西韩城等地其中以内蒙古准格尔煤田的资源最多。
国内有五大高岭土矿产地:
(1)湖南省衡阳县界牌镇矿产资源丰富。高岭土、纳长石、钾长石、石英石储量达2亿吨,现有采矿及矿产品加工企业近40家。大牌岭矿区(以高岭土矿为主)单矿蕴藏量雄居亚洲之冠达8000万吨。全镇年采矿量在50万吨以上,供应全国数百家陶瓷厂。
(2)茂名地区高岭土,茂名盆地内高岭土矿属沉积岩风化残积亚型矿床,其石英等砂质含量大于50%,故称为砂质高岭土矿。茂名高岭土从成因上说经过风化残积——搬运自磨;——再风化三个阶段,高岭土风化完全,晶片以单片状为主,粒度细。主要为造纸涂料原料。
(3)龙岩高岭土,属风化残余型高岭土矿床。由于含铁量低于0.3%,钛低于0.02%,并含有一定量低温溶剂元素(Li2O)是电瓷、高档日用、美术瓷的理想原料。
(4)苏州阳山高岭土,该矿床为热液蚀变型高岭土。质地纯净的苏州阳山泥,其化学成分十分接近高岭石的理论成分,Al2O3含量可高达39.0%左右,颜色洁白、颗粒细腻。主要用于催化剂载体及化工原料。
(5)合浦高岭土:属风化残余型高岭土矿床。主要用于建筑陶瓷原料。
(6)北方煤系高岭土:为沉积型高岭岩,主要分布于我国产煤区域,可用于建筑、涂料、油漆及造纸涂料——煤系土。
上述6大产区产量约占中国80%以上,在资源类型方面也有主要的代表性。
(10)高品位高岭土市场调查扩展阅读
高岭土主要在地表之下,其质地和成分的不同可以直接影响到陶和瓷在窑中的变化,所以优质的高岭土可以制作出出色的器物,而往往多会在其周边建立起名窑。如景德镇、金门县等。
高岭土的开发和利用,为景德镇制瓷业的快速发展奠定了坚实的基础,对世界陶瓷工艺的发展起了重大的变革作用。随着瓷胎最初的单料成瓷(使用瓷石一种原料制造瓷器)到后来的二元配方(使用瓷石和高岭土两种原料制造瓷器),制瓷工艺也日益优异。以高岭土作为制瓷原料,大大促进了陶瓷工艺水平和制品质量的提高,促进了陶瓷的发展。
从元至清中期为高岭矿开采旺盛时期。如今高岭山虽然已不再出产高岭土,但是由于她在陶瓷史中的地位和大量的古遗迹,已经成为瓷都景德镇市的观光旅游胜地。景德镇自从采用高岭土配制瓷器后,出产的瓷器洁白无瑕,更为精美。1712年法国传教士昂特雷柯莱曾向国外介绍过高岭的瓷土,于是高岭土从此便名声远扬,身价百倍。
在医学上它被用于腹泻的治疗。在美国曽治疗腹泻的“白陶土和果胶制剂”(Kaopectate)成分之一,但由于FDA2003年报告称无法证明其疗效,后被次水杨酸铋取代