Ⅰ 从哪里能看到电商的行业数据分析报告
我国网络零售交易规模连续多年稳居世界第一
2019中国国际电子商务博览会正在浙江义乌举行。作为主办方的中国国际电子商务中心相关负责人介绍说,我国电子商务发展规模和模式丰富程度,都已经遥遥领先其他国家,在网络零售交易额方面,已经连续多年稳居世界第一。
2018年中国电子商务交易总额超30万亿,10年增长10倍
据前瞻产业研究院发布的《中国电子商务行业市场前瞻与投资战略规划分析报告》统计数据显示,2008年中国电子商务交易总额仅仅达3.4万亿元。2010年中国电子商务交易总额超4万亿元。到了2013中国电子商务交易总额突破10万亿元。截止至2017年全国电子商务交易额达29.16万亿元,同比增长11.7%。其中商品、服务类电商交易额21.83万亿元,同比增长24.0%;合约类电商交易额7.33万亿元,同比下降28.7%。预计2018年中国电子商务交易额将达37.05万亿元。进入2018年底,中国电子商务交易总额超30万亿元,达到了31.63万亿元,2008-2018年这十年期间增长了10倍。
2008-2018年中国电子商务交易额统计情况
数据来源:前瞻产业研究院整理
中国国际电子商务中心副主任姚广海表示,不仅仅是规模在世界遥遥领先,同时我们在电商模式的丰富程度,在电商覆盖的领域,都是领先于世界(其他国家)的,同时直接影响电商发展的网上支付和物流快递这两个环节,我们在世界上更是遥遥领先。
专家表示,在拉动消费方面,电子商务的作用巨大。回顾过去几年中国电子商务的发展成就,无疑跟信息技术的进步是分不开的。4G技术的发展,给移动互联网带来了便捷性,也带动了手机端消费模式的兴起。即将到来的5G技术可能会带来更大的应用市场。
中国电子商会秘书长彭李辉表示,比如说万物互联,我们的车联网,所有的出行、无人驾驶,都可以做到零延时的信息传递。未来在5G环境下面的一些直播短视频,因为短视频崛起之后,(对)带动销量有很大的帮助,通过视频的角度,能够初步了解商品的功能,精准找到需求。
跨境电商为双边贸易发挥作用
近年来,随着“一带一路”建设的不断深入,中国与沿线国家在电子商务领域展开了广泛的交流与合作,跨境电商不断深耕。俄罗斯驻华商务代表处高级专员亚历山德拉·加拉甘现场分享的数据显示,2018年俄中两国贸易额首次突破1000亿美元,双边贸易额达到1070亿美元,同比增长27%。其中,2018年两国跨境电商贸易额已超过40亿美元,同比增长23%,两国客户收到超过3亿个包裹。
她说,俄罗斯的主要外国电商平台是中国,从包裹数量来看90%的海外包裹来自中国,从金额上看中国占俄罗斯海外网购的50%。2018年6月两国共同签署“关于电子商务合作的谅解备忘录”,电子商务在双边经贸关系中发挥着越来越重要的作用,同时也是吸引中小企业参与双边经贸合作的重要手段。
中非电子商务有限公司董事长侯志刚认为,数字经济的发展已成为一种必然趋势,电子商务有助于企业积极应对数字贸易壁垒,成为企业抓住数字贸易发展新机遇的重要载体。
社交电商成新的市场风口
针对近两年社交电商以其裂变式的成长速度不断刷新市场认知,成为新的万亿市场风口。国美零售控股集团副总裁李欣表示,随着中国城镇化率的不断提升,“拼多多”的崛起就很好证明了中国还有很广阔的未被开发出来的电商发展空间。社交电商是大的蓝海,是有温度的,下一步国美很重要的切入点就是社交电商。
据悉,国美于2018年4月开始上线和试运营旗下社交电商平台国美美店,截至2018年底,GMV(网站成交金额,包含付款和未付款两部分)43亿,服务用户超过190万人。
Ⅱ 如何做电商数据分析
目前我也从事数据分析,主要用到的是数据透视表;主要是提供一些报表供回领导参考。其实我感觉应该用答到了5W2H分析法,领导还跟我说过SWTO矩阵分析法,让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存清仓表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。
Ⅲ 电商数据分析要掌握哪些数据指标
运营模块
运营的主要职责是达成销售目标,同时控制运营成本。所以在这一模块我们主要关注三个数据指标:业绩达标率、业绩增长率、销售利润额。这三个指标非常好理解,主要是用来综合评估运营水平。
商品模块
这一模块主要涉及两个职能,商品企划和商品运营。
商品企划的主要职能是在一个销售周期内,对商品的品类、价格带、风格、销售进度进行整体把控,避免使用单一产品冲业绩。
商品运营的主要职能是负责商品的上架、入库以及主推策划,通常流程是:测款-养款-爆款-返单。当然,一个店铺也不能打造过多的爆款,爆款的增多会损害品牌调性,到这一旦折扣下降就会引起消费者流失的局面。
市场模块
市场模块是仅次于运营的第二大模块,同时又和运营的工作密不可分。主要包括市场推广投放、会员维护、活动包装等等。
其中,推广是一个店铺的重中之重,也是我们数据分析的主要对象,推广包括包括付费和免费两种渠道,付费渠道比如我们熟知的直通车、钻展等等,免费推广如微博、贴吧等等。定时的进行会员维护会促进会员沉淀,活跃的会员可以有效的节省推广费用。
视觉设计模块
这部分模块中,我们主要分析的还是店铺流量的漏斗转化路径。主要涉及的包括:页面逻辑、标签分类、主推商品。这部内容对应的就是我们常说的流量分析,分析客户的访问路径,并结合漏斗模型,看看那部分的转化对最终的转化率影响最大并进行优化。
关于电商数据分析要掌握哪些数据指标,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅳ 电商平台应该分析哪些数据具体怎么去分析
电子商务平台需要分析的数据及分析规则如下:
一、网站运营指标:
网站运营指标主要用于衡量网站的整体运营情况。在这里,EC数据分析联盟暂时将网站运营指标分为网站流量指标、商品类别指标和供应链指标。网站流量指标主要用于考虑网站优化、网站可用性、网站流量质量和客户购买行为。
商品类别指标主要用于衡量网站商品的正常运营水平,与销售指标和供应链指标密切相关。这里的供应链指标主要是指电子商务网站的商品库存和商品配送,而不考虑商品的生产和原材料的库存和运输。
二、商业环境指标:
这里,电子商务网站经营环境指标分为外部竞争环境指标和内部购物环境指标。外部竞争环境指标主要包括市场占有率、市场拓展率、网站排名等,这些指标通常使用第三方研究公司的报告数据。与独立的B2C网站相比,淘宝在这方面的数据要准确得多。
网站内部购物环境指标包括功能指标和运营指标(这部分与之前的流量指标一致)。常见的功能指标包括商品种类的多样性、支付配送方式、网站正常运行、连接速度等。
三、销售业绩指标:
销售业绩指标与公司的财务收入直接挂钩,在所有数据分析指标体系中起着主导作用。其他数据指标可根据该指标进行细分。
网站销售绩效指标主要关注网站订单的转化率,而订单销售指标主要关注具体毛利率、订单效率、重复采购率、退货率和汇率。当然,还有很多指标,如总销售额、品牌类别销售额、总订单、有效订单等,这里没有列出。
四、营销活动指标:
营销活动的成功通常从活动效果(收入和影响)、活动成本和活动凝聚力(通常通过用户注意力、活动用户数量和客户单价来衡量)等方面来考虑。在这里,营销活动指标分为日常市场运营活动指标、广告宣传指标和对外合作指标。
其中,市场经营活动指标和广告投放指标主要考虑新增客源数量、订单数量、订单转化率、每次访问成本、每次转化收益和投资回报。而对外合作的指标则由具体的合作伙伴来确定。例如,电子商务网站与返利网合作时,首先考虑的是合作的回报。
5、客户价值指数:
顾客价值通常由三部分组成:历史价值(过去消费)、潜在价值(主要从用户行为考虑,以RFM模型为主要衡量依据)、附加价值(主要从用户忠诚度、口碑推广等方面考虑)。这里,客户价值指标分为总体客户指标和新老客户价值指标。
这些指标主要从客户贡献和购置成本两个方面来衡量。例如,我们使用访客数量、访客成本和从访客到订单的转换率来衡量总体客户价值指数。除了上述考虑之外,老客户价值的衡量更多的是基于RFM模型。
(4)电商市场调查报告数据分析扩展阅读:
电子商务中使用分析数据的优点:
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。
一般来说,单个数据索引的分析并不能解决这个问题,而且每个索引都是相互关联的。将所有索引编织成一个网络,并根据具体需要找到每个数据索引节点。当用户在电子商务网站上有购买行为时,他们会从潜在客户转变为网站的价值客户。
电子商务网站一般将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息存储在自己的数据库中,因此,这些客户可以根据网站的运营数据来分析自己的交易行为,估计每个客户的价值以及为每个客户拓展营销的可能性。
参考资源来源:
网络-电子商务数据分析
Ⅳ 电商数据分析应该从哪些方面进行分析
我一直在问答谈运营技术。但是我认为,我最强在于数据跟视觉。
我认为,竞争到最后,运营跟运营之间的差距是从数据跟视觉开始区分的。
今天我们恰巧有时间来谈谈数据。
什么是数据分析思维?
数据分析思维,我认为是:把行为转化为数据-通过数据反推行为。
我举个例子:
你经常来我店铺购买姨妈巾。
你今天过来买姨妈巾,我就知道你大概一周内要来大姨妈。根据你购买的数量跟规格,我就能推断你一次大姨妈来多久,量大概多少。拉出来你半年的购买时间,我就可以推断你多久一次大姨妈是不是稳定。
如果有两个月没看到你购买姨妈巾了。。。那肯定是在两个月前,你男朋友的雨衣破了。
拉出来你男朋友的购买记录,我就知道,这个店铺的雨衣可能不合格。
为了验证他是不是不合格,我们去看看他半年内的复购率是不是远低于同行。
嗯,就因为你没有买姨妈巾,我怀疑这个店铺的雨衣不合格。
这就是数据分析的基本思维。
学会数据分析的基本思维,只能说,你勉强具备数据分析的可能。
那么做数据分析。需要明白几个东西。
1、数据样本:数据样本如果选择不合理,那么结果完全就是错误的。譬如我去抓取一个定位40岁大妈的姨妈巾店铺,要中国女性的姨妈周期,那根本就不科学好吗。这是青春期跟更年期的差异(此例子说明林慕白同学同样对妇科知识有所涉猎,欢迎广大适龄未婚女性知友来信咨询)。
实战中经常犯的例子是:平销转化率很好的单品,在聚划算卖不好。平销转化率不好的某些单品,聚划算反而会卖爆?为什么呢?想想,别问我,自己想。闹不明白就别尝试做电商的数据分析了。
2、数据选择:实际上我们会遇到很多的数据,但是有些数据不一定是我们想要的。就像我们这辈子会遇到很多很好的女生,但是我们很难明白,谁才能更好陪伴我们走完这一生。这个事情无法举例,我这边给一份试题:
现在我们店铺需要做优惠券促销,目的要提高客单价。
好,你告诉我要做满100减10元。
嗯,很好,那你现在告诉我,为什么是满100而不是满110,为什么是减10元而不是减20。拿出来你的数据。
嗯,不要问我怎么弄。也不要怀疑我是不是真的能分析出来,我真的能。
3、动态变化:我们一般最常用的,就是通过数据之间的变化,来分析可能出现一些什么问题或者变化。然而当一个数据量变化的时候,往往其他的数据也会发生变化。所以我们需要清晰什么数据之间是正相关,什么是反相关,他们之间的关系,在什么情况下是成立的。譬如正常收藏的比例跟转化率是正相关的,但是这几天他们是反相关的。转化率越掉,收藏率可能就越高。
我就谈谈数据分析的框架,我估计这些东西别人懒得讲,所以我讲一下。
至于什么工具看什么数据让别人讲吧。
码字有些累。谢谢
Ⅵ 市场调研报告数据怎么分析
不做问卷调查来就能描述,说明你有编辑源潜质。但会影响调研的真实性。
市场调研的主要目的就是要通过调研的数据来科学的分析一个项目/问题的普遍性规律,通过调研结果来修改和纠正你的决定(或者在学术上证明某些问题)。
所以问卷的问题或者说答案是调研报告的关键。
Ⅶ 总结 电商数据分析师的经验
电商数据分析师的经验总结
曾经有人说,世界上最苦逼的工作是程序猿们,每天只能和没有性别的代码打交道。整天熬夜的疯狂写代码,然而并没有什么卵用。一不能吃,二不能喝,三不能幻想,对此我深表同情。
直到我自己走出校门,踏入企业以后,才知道:最苦逼的工作,不是程序猿,而是行业分析师,苦逼指数五颗星。要说我也是一个从985高校毕业的经济系高材生,毕业后在一家外资企业上班的,待遇还算可以!公司是生产智能手机的,品牌名称大家一定都知道,很抱歉不是乔帮主家。
我每天的主要工作内容,是负责市场竞争策略的研究工作。随着大数据概念的风生水起,需要调查研究的范围日益扩展了。从之前的宏中微三观市场,一下子增加了舆情、电商、情报等不太熟悉的新潮领域。没法子,马云不是说了,世界已经从信息时代(IT)变换到数字时代(DT)了,分析师也得与时俱进啊!
以前,我们都是从国外知名咨询公司采购研究报告,进行市场研究与战略决策。就像平行进口的电器和汽车一样,进口的报告产品质量和数据水平比较国产报告质量要好一些,但是价格过于高大上了,动辄好几万一份,还是美金。随着市场竞争日益激烈,公司一直都在降本增效了。我只好寻找一家国内大数据研究公司,一方面可以降低咨询成本,一方面我们需要切换到数据思维,逐渐戒掉之前的咨询思维了!
为了找到更好的数据供应商,我可真是煞费苦心啊!不眠不休地网上冲浪,调动身边一切可以调动的资源。做了一周的功课,没有遇到一个称心如意的数据合作伙伴,感觉这件事情比自己当初寻找老婆还有困难呢!
直到有一天,我和关系不一般的“董小姐”一起吃饭,她提到了一个据说很厉害的大数据服务运营商。我就问她,那家公司叫什么名字?她含含糊糊地回答我,那家公司据说……丈二和尚摸不到头脑,我一来气就不问她了!不就是一个公司名称,又不是你的三围信息,有什么值得保密的?
晚上回到家里,我继续网上冲浪,寻寻觅觅了老半天,把网页游戏和美女直播的时间都浪费了,还是没有找到她说的那家公司。迫不得已,我度娘了一下“据说”。出乎意料的是,奇迹的事情发生了!原来“董小姐”早就告诉我那家公司的名字——据说(datacall),国内知名的大数据运营服务商。从头到尾地浏览了据说平台网站后,我突然有了柳暗花明又一村的感觉。
据说,目前覆盖了十大领域的行业研究方向,对于国民经济主要行业都有数据支持和研究功底,可以按照自己的需求进行行业选择。
据说,你可以提交自己的需求,然后采用需求众筹、产品众包的模式进行精益生产,用大数据的思维进行数据应用产品的设计,一切用数据说话,没有一点点伤痕。
据说,采用开放化的发展策略,对于时下新兴的热门研究方向,无论是情报舆情还是电商口碑,都有自己的研发团队,可以整合全网数据资源,进行系统化的分析研究。
据说,活用了互联网思维的发展模式,细颗粒度聚焦行业热点、痛点和风险点。通过降低研究维度,提高了研究深度和精度,极大地降低了研究报告的成本,让每一个中小微企业可以负担得起咨询费用。比如,我要做手机市场研究,可以从电商渠道、品牌和口碑三个维度分别进行定制化的数据应用产品,每个产品系列单位价格只有几十块钱,不必扛着一麻袋人民币去付款了!
第二天,公司研究部门和据说数据平台签订了谅解备忘录,终于告别了高成本、大部头、长周期的研究报告了;再也不用为了审批研究经费,跟财务部那帮家伙争吵得脸红脖子粗了!
据说,未来真的可以很美好!
Ⅷ 电商如何做数据分析
电商数据积累的越来越多,人工处理分析很苦难,这就要借助大数据分析工具了,推荐大数据可视化分析工具大数据魔镜,有5个版本,云平台版本,永久免费,基础企业版离线安装使用也是免费的,另外还有标准企业版,高级企业版和hadoop版,可以针对大数据的企业的需求定制解决方案,做的很专业。谢谢采纳
Ⅸ 在电商行业如何进行大数据分析的
电商行业相对于传统零售业来说,最大的特点就是一切都可以通过数据化来内监控和改进。通容过数据可以看到用户从哪里来、如何组织产品可以实现很好的转化率、你投放广告的效率如何等等问题。
当用户在电商网站上有了购买行为之后,就从潜在客户变成了价值客户。
我们一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里,所以对于这些客户,我们可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户扩展营销的可能性。