『壹』 如何做销售数据分析
最好的就是进行SOWT分析,了解企业的优劣,竞争的优劣,以便策划最好选择最佳的实行计划或方式。再配合销售数据进行深层分析,了解潜在机会或威胁。对于机会,适时进行策略性把握;对于威胁,做好避免或最低化的措施。
『贰』 销售数据分析主要从哪几方面进行
1、按周、月、季度、年的分类销售数据汇总;
2、月、年销售汇总数据的同专比、环比分析,属了解变化情况;
3、计划完成情况,及未完成原因分析;
4、时间序列预测未来的销售额、需求;
5、客户分类管理;
6、消费者消费习惯、购物模式等等
『叁』 营销数据分析中常用的数据分析方法一般是什么
这个分析方法比较多了,一般的常用的很多数据分析方法都可以用来做
主要看你的数据适合做什么分析 以及你 的主要分析目的
『肆』 电商营销数据分析课程讲什么内容
在大数据时代下,电商企业关注产品外,更需要关注数据背后所反映的问题。如所专有企业都关注的属财务数据和行业竞争环境数据外,电商企业更要关注: 1.网站运营数据:PV、UV、评论数、跳出率、新用户注册购买率、广告投放转化率、平均每个用户获取成本等,SEM流量占比; 2.用户数据:网站用户年龄、用户主要购物时间、用户地域分布情况、用户使用浏览器、用户职业等相关人群属性数据。 针对电商企业对数据分析岗位的人才技能,本课程有针对性地通过在线学习向学习者传递电商营销数据分析所涵盖的数据收集、挖掘和分析、报告及应用的完整数据分析知识,且数据分析相关教学外,本课程还涵盖了电商企业组织架构、工作流程、工作方法和数据分析的工作定位等从事电商相关行业的必备知识,对于学员了解行业、深入行业和应用行业有积极意义。 最后,对于课程中的每个教学环节,几乎都涵盖了个人知识技能以及真实电商的分析和应用案例,可以帮助学员迅速进入角色,并且学以致用。
『伍』 如何做好销售数据分析
你好,可以参考下面快消行业销售数据分析的案例:
某公司是全球最大的日用消费品公司之一,同时也是世界500强企业,拥有员工近10万人,涉及产品包括化妆品、个人清洁、个人护理、面部护理、婴儿护理、家居清洁等诸多品类。多年以前,该公司就在中国成立研发中心,重点开拓国内市场。时至今日,已在北京、上海、天津等地成立了多家分公司,员工总数近万人。
随着国内快消市场竞争环境的日趋激烈,这家公司也面临着较大的增长压力,同时,针对庞大的销售团队,如何进行更好的管理,也成为了目前该公司急需解决的问题。
业务痛点
为完成月度/季度/年度销售指标,需要实时了解整体业务运营情况,找出增长或下降原因,及时做出有效的应对;
销售团队庞大,想要及时了解每一名销售主管的销量完成情况、拜访完成情况、在店时间等指标;
业务系统繁多,如DMS经销商系统、CRM销售管理系统、WMS系统、财务系统等,各系统数据结构不统一、接口混乱,无法进行统一分析,数据孤岛问题严重。
现有做法
一直以来,该公司都以晨会形式进行销售团队的管理,但往往每次晨会都如走过场一般,黑板上的销售排名缺少及时有效的数据支撑,很难从人分析到店,再到产品,很多决策还是靠“拍脑袋”决定。
组建报表团队,负责每一个业务系统的数据报表工作。由于报表产品基本以“周”、“月”为单位,所以管理层无法及时掌握销售情况。同时,在日益复杂的数据和系统压力面前,报表团队也逐渐成为了管理上的瓶颈。
面对销售增长率的下降,该公司往往会找到咨询公司,从消费者分析入手,对产品结构品牌策略业务布局进行战略上的调整,以寻求增长之道。但这种方式成本太过高昂,而且在实际执行中往往存在很多桎梏。
解决方案
基于DH Data Connector Framework(数据连接器框架),整合DMS、CRM等几大业务系统,构建统一、实时的数据分析平台;
建立全局业务看板,实时掌握整体销售额、利润、成本、库存等关键指标,通过全维度数据下钻,分析销售变化趋势,探寻销售增长点;
建立RD晨会看板,向各级销售人员及时传递各项关键数据,包括本月销售完成情况、销售目标完成率、店点分销情况等销售数据,以及在店时间、拜访数等行为数据,支撑销售及管理人员的日常工作;
根据该公司的管理层和销售团队组织架构,设置权限分配,满足各级人员查看和分析数据。
以上内容由DataHunter整理提供
『陆』 如何做好营销数据分析
营销数据分析很多时候就是销售数据分析,一般可以这样处理:整理好销售中需要关注的数据维度,将其做成可视化仪表盘,一键分享给老板查看,我们的销售数据包括这些维度:
1、销售外勤管理
作为一个小领导,每天都要看下属的客户拜访情况,团队的成员会在协同软件上详细记录自己的拜访的情况,包括客户名称、行业和具体情况 ,由我来做汇总工作。
销售排名:优秀的销售都喜欢拼第一,所以销售龙虎榜尤为重要,每天莓菌会通过实际业绩排名对前三名员工给予相应的奖励,老板也会通过排行榜了解各部门业绩情况。
客户排行榜:客户方面也会做成交额汇总,因为大客户是需要定期维护的。对于有些大客户,成交额下降可以提醒我们及时做好补救。
库存管理:对于销售而言,了解公司库存会节约很大的成本,因为一旦缺货就会影响正常的交付时间。而管理者,通过图表来了解产品销售情况,哪些产品卖的好一目了然。
这些数据都是销售比较关注的数据,可以在BDP个人版上做好可视化图表,然后直接通过“分享”直接将数据结果分享给Boss。而且每周在BDP个人版追加数据(要是是直连数据库或第三方平台数据,那数据都不需要追加,数据是自动更新的),省事很多很多,数据结果图表也就更新了,分析效率大大提高了呢,我就有更多时间去管理销售业绩,业绩怎能不提高呢!
『柒』 营销人员该如何搞定数据分析
【导读】随着精细化营销理念的普及,人们对营销的认识也逐渐深入,越来越多的营销人员认识到,营销不仅是一门艺术,也是一门科学。在市场快速变化的时代,基于数据进行分析,对市场需求、客户行为进行科学准确的掌控。那么,营销人员该如何搞定数据分析呢?
1、营销人员的常见问题
通过数据分析,营销人员可以找到以下问题的答案。
问题一:流量从哪里来?
互联网时代就是流量的时代,得流量者得天下,但是做了这么多营销推广,究竟哪个渠道是有效的渠道的质量又该如何比较。
问题二:吸引来的用户为什么没有转化?引流曝光率上去了,转化率却不高,苦于没有优化的方向。问题到底出在哪里?
问题三:ROI如何提升?
ROI是衡量营销效果的终极标准,也是营销人员考核的核心指标。如何提升ROI也是营销人员始终需要考虑的问题。
2、像搜索一样简单的数据分析工具
但是,如何才能更快地学会数据分析,提升自己的营销力,也成为了广大营销人员和营销团队的难题。毕竟,平时的工作时间紧任务重,想要做出好看实用的图表,又需要花费大量的时间。幸运的是,数据分析工具已经取得了很大的进步,学习成本也越来越低,只需要找到正确的工具,营销人员很快就能搞定数据分析。
而DataFocus就是这样一款为营销人员准备、学习成本低、只需10分钟就能上手做出精美图表的数据分析系统。
DataFocus和一般的数据分析工具不同,它最大的特点是可以用类自然语言来交互,只需像使用搜索引擎一样输入问题,DataFocus就能自动进行数据分析和可视化呈现。
3、数据导入到数据可视化
进入DataFocus之后,左侧有数据管理、搜索、数据看板等版块。数据管理可以上传和管理数据,搜索就是对数据进行分析和做各种图表;数据看板可以展示数据分析的结果。
关于营销人员该如何搞定数据分析,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
『捌』 销售数据分析主要从哪几方面进行
销售数据分析主要从:
1、单店货品销售数据分析
畅滞销款分析是单店货品销售数据分析中最简单、最直观、也是最重要的数据因素之一。畅销款即在一定时间内销量较大的款式,而滞销款则相反,是指在一定时间内销量较小的款式。
款式的畅滞销程度主要跟各款式的可支配库存数(即原订货加上可以补上的货品数量的总和)有关,比如某款销售非常好,但当初订货非常少,也无法补的到货,这样在很短的时间内就销售完了。
其总销售数量并不大,那么也不能算是畅销款,因为该款对店铺的利润贡献率不大。在畅滞销款的分析上,从时间上一般按每周、每月、每季;从款式上一般按整体款式和各类别款式来分。
2、单款销售生命周期分析
单款销售生命周期指单款销售的总时间跨度以及该时间段的销售状况(一般是指正价销售期)。单款销售周期分析一般是拿一些重点的款式(订货量和库存量较多的款式)来做分析,以判断出是否缺货或产生库存压力,从而及时做出对策。
单款的销售周期主要被季节和气候、款式自身销售特点、店铺内相近产品之间的竞争等三个因素所影响。单款的销售周期除了专业的销售软件以外,还可通过Excel软件,先选定该款的销售周期内每日销售件数,再通过插入图表功能,通过矩形图或折线图等看出其销售走势,从而判断其销售生命周期。
(8)营销数据分析思路扩展阅读
针对同一市场不同品牌产品的销售差异分析,主要是为企业的销售策略提供建议和参考。针对不同市场的同一品牌产品的销售差异分析,主要是为企业的市场策略提供建议和参考。
微观销售分析,主要分析决定未能达到销售额的特定产品、地区等。
销售分析法的不足是没有反应企业相对于竞争者的状况,它没有能够剔除掉一般的环境因素对企业经营状况的影响。销售分析可以决定一个企业或公司的生产方向 。
『玖』 数据分析可以用哪些营销策略
一、营销策略
数据准备就绪,要开始执行营销活动,并让各种目标落地,先要做的工作就是营销计划的制定,这就属于数据在营销策略层面的价值体现。企业把大目标分解到市场部门,市场部门会再次细分,落实到市场经理,此时,数据营销人员就要帮助市场经理细分目标市场,细分用户,并评估数据质量。
二、数据创意
常听有广告创意,其实数据营销也有创意,而且对于大数据营销来说,数据创意是非常重要的步骤,具有极大的价值。
数据创意是根据知识和经验,结合内外部各种数据资源,创造数据变现的方式。虽然是同样的数据,但在不同的数据创意下,其体现的价值区别很大。
三、商业智能
营销大数据分析可能需要从很多个维度和点切入,得到很多个相对独立的结论,而要产生能指导市场行为的结论,可能需要将若干个结论整合成一个结论才可以,如何整合呢?
经验能一成程度上判断,但经验并不靠谱,因为一切都是在变动中的,从来没有一成不变的东西。用户行为的影响因素往往是非常多的,要将这写因素有效的整合并发现有价值的信息必须要借助数据挖掘解决问题。
关于数据分析可以用哪些营销策略,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。