『壹』 如何做好营销数据分析
营销数据分析很多时候就是销售数据分析,一般可以这样处理:整理好销售中需要关注的数据维度,将其做成可视化仪表盘,一键分享给老板查看,我们的销售数据包括这些维度:
1、销售外勤管理
作为一个小领导,每天都要看下属的客户拜访情况,团队的成员会在协同软件上详细记录自己的拜访的情况,包括客户名称、行业和具体情况 ,由我来做汇总工作。
销售排名:优秀的销售都喜欢拼第一,所以销售龙虎榜尤为重要,每天莓菌会通过实际业绩排名对前三名员工给予相应的奖励,老板也会通过排行榜了解各部门业绩情况。
客户排行榜:客户方面也会做成交额汇总,因为大客户是需要定期维护的。对于有些大客户,成交额下降可以提醒我们及时做好补救。
库存管理:对于销售而言,了解公司库存会节约很大的成本,因为一旦缺货就会影响正常的交付时间。而管理者,通过图表来了解产品销售情况,哪些产品卖的好一目了然。
这些数据都是销售比较关注的数据,可以在BDP个人版上做好可视化图表,然后直接通过“分享”直接将数据结果分享给Boss。而且每周在BDP个人版追加数据(要是是直连数据库或第三方平台数据,那数据都不需要追加,数据是自动更新的),省事很多很多,数据结果图表也就更新了,分析效率大大提高了呢,我就有更多时间去管理销售业绩,业绩怎能不提高呢!
『贰』 销售数据分析主要从哪几方面进行
1、按周、月、季度、年的分类销售数据汇总;
2、月、年销售汇总数据的同专比、环比分析,属了解变化情况;
3、计划完成情况,及未完成原因分析;
4、时间序列预测未来的销售额、需求;
5、客户分类管理;
6、消费者消费习惯、购物模式等等
『叁』 如何分析销售数据
做自家的销售分析只是你的基本功课,除此之外还有很多事情需要做、需要厘清。 曾经有一次,采购正在做明年度采购计划的提案,他们做了非常详尽的销售数据分析,把过去关于该品类的销售数据、月别变化、成长率、材质、颜色喜好度分析等,一一仔细提报,他们说得很认真,我则有点失望。 我问了一个问题:去年这个商品总共销售了多少件?答案是:822件。一个一年只卖出822件的商品,你们花了20页去分析它,然后以此作为下一年度的采购依据,对此我无法给予同意与否的答案;你们确定全中国类似的商品,全年只卖出822件?还是你们只知道发生在我们店里这822件的故事? 其实问题不止是数量太少不足以佐证而已。从事零售行业十几年,我发现非常多的同业都有一个盲点,也就是每次作销售分析时,永远是拿自己卖场过去的销售记录出来作分析。但实际上,你的销售记录只代表到达你们卖场的客人中已经实施消费的客人的意见,不一定代表得了整体市场的现状,你应该需要探讨的还有: a) 没看到陈列?或是陈列方式难以取货? b) 觉得价钱太高? 2.没到你卖场的客人,为何不想到你的卖场购买? a)不知道你有卖? b)对你卖场的价格印象度不佳? c)觉得到你家买太远?太麻烦? 3.其他卖场的相关产品,它们的销售状态为何? a)是这类型的商品都卖得不好?还是在其他卖场都卖得很好,只有在你的卖场卖得不好? b)同品类的商品,现在已经流行不同材质或是花色? 有太多事情需要厘清,不是说你不用做自家的销售分析,应该说,这只是你的基本功课,自家的销售分析必定得先做,但在分析时,还需要确定几件事: 1.销售数据本身是否具有代表性?数量够大吗? 2.与其关联的商品品类是否可以一同分析? 4.同商店是否有较大的销售差异性? 为了促使你的销售分析能得到更正确的判断,除了你现有的销售数据外,还可以使用下列的手法: 1.消费者购物行为调查:实地观察你卖场内目标消费者的购物行为,他们从哪里进来,看了什么?怎么看?尤其是针对你想研究的品类,有多少进店的消费者会走到那一区,是径直走过去,还是边走边逛看到的?是拿起包装仔细阅读后放回去,还是看了两眼却没有驻足?你可以从消费者在你店里的购物行为中,嗅出这类型品类对消费者的重要性,包括目标消费者的Lifestyle(生活方式),他们的外观型图。而除了你自己的卖场外,还可以再到竞争者的卖场,观察他们的消费者如何购物,从中间挖掘出你的竞争策略。 2.趋势分析:了解该品类的原材料销售状况,勾勒可能的未来性;了解消费者Lifestyle是否有产生变化? 3.协力厂商咨询:这是最好也最直接的管道,跟你的协力厂商成为朋友,他不会只在你这家店贩卖,从他那里,你可知道非常多竞争厂商的动态及商品的未来。 4.看展:要勤看各类型跟你负责的品类商品相关的展览,在中国,这样的展会比比皆是,在会展现场能够观察出新品未来的趋势及消费者的喜好,多看多听多观察,才能得到更多更正确的判断。 5.走店:除了自家的店,多去竞争者的店走走,也不要忘了多观察目标消费者喜欢出没的店,即使不是竞争业态,也能帮助你了解消费者的想法。 6.搜集国内外资讯:透过网路、杂志,多了解业界动态及趋势动向。 对我而言,销售数据是一个动态的数字,不是拿过去的资料就能得到证明的,所以不要轻易使用过去的数字做出对未来的判断。 (作者系百安居中国区市场总监)
『肆』 如何分析销售数据
懂业务、行业知识,这是做分析的基础,能够很好的切入到问题中,理解需求,对进销存等数据情况有一定的见解
分析方法,如回归、时间序列、聚类、决策时等,知道从哪入手后,选择合适的方法达到怎样的效果,得出比较好的结论
工具,如SPSS、SAS等,使用工具能够帮你处理数据,展现结果,分析出你想要的
总之,数据分析就是要多实践
『伍』 marketing怎样分析销售数据
一般数据分析会运用在这两个大方面:Marketing, Risk Management/Acturial.
Marketing,根据行业不同,数据分析能玩的东西也不同。例如银行业,由于银行系统存储了所有关于客户存取钱的信息,以及交易记录,所以很容易可以预测出该用户的财务习惯和总资产。而电子商务行业,可以从客户浏览网页的习惯,研究出客户对产品的喜好。而保险业,则可以通过不同渠道的纪录,分析客户对产品购买的潜在价值。从上面几个例子来看,数据分析在Marketing的应用,其实是公司和客户关系的研究和应用。
那么对商业运作上的贡献可以分为两方面,一个是提供全面的客户分析,例如,客户分类(Customer Segmentation),也可以客户对一些产品或campaign的反应(Response Rate), 还有忠诚度(Customer Loyalty) 分析以及一些特定的分析等等,可谓是18班武艺,让Decision Maker更好的理解客户。而理解客户的关键,则是提出更好的解决方案去Approach客户,并且获得销售。只是一个直接的因果关系,为的只有一个目的,销售。所以在这里,如何将数据分析的价值发挥到最大并不是数据分析的算法(No offense),而是如何将分析出来的结果和商业运作相结合。这和你老板,也就是管理数据分析的负责人在部门的能力有直接关系,如果老板是个很Aggressive的人,有能力说服,用平日数据分析做出的结果去说服部门Director或是其他部门的负责人,让他们应用我们的分析结果,而且要让他们信服数据分析能为商业运作带来价值,对销售带来价值。只有这样,数据分析的作用才能发挥到最大。
『陆』 如何做好销售数据分析
你好,可以参考下面快消行业销售数据分析的案例:
某公司是全球最大的日用消费品公司之一,同时也是世界500强企业,拥有员工近10万人,涉及产品包括化妆品、个人清洁、个人护理、面部护理、婴儿护理、家居清洁等诸多品类。多年以前,该公司就在中国成立研发中心,重点开拓国内市场。时至今日,已在北京、上海、天津等地成立了多家分公司,员工总数近万人。
随着国内快消市场竞争环境的日趋激烈,这家公司也面临着较大的增长压力,同时,针对庞大的销售团队,如何进行更好的管理,也成为了目前该公司急需解决的问题。
业务痛点
为完成月度/季度/年度销售指标,需要实时了解整体业务运营情况,找出增长或下降原因,及时做出有效的应对;
销售团队庞大,想要及时了解每一名销售主管的销量完成情况、拜访完成情况、在店时间等指标;
业务系统繁多,如DMS经销商系统、CRM销售管理系统、WMS系统、财务系统等,各系统数据结构不统一、接口混乱,无法进行统一分析,数据孤岛问题严重。
现有做法
一直以来,该公司都以晨会形式进行销售团队的管理,但往往每次晨会都如走过场一般,黑板上的销售排名缺少及时有效的数据支撑,很难从人分析到店,再到产品,很多决策还是靠“拍脑袋”决定。
组建报表团队,负责每一个业务系统的数据报表工作。由于报表产品基本以“周”、“月”为单位,所以管理层无法及时掌握销售情况。同时,在日益复杂的数据和系统压力面前,报表团队也逐渐成为了管理上的瓶颈。
面对销售增长率的下降,该公司往往会找到咨询公司,从消费者分析入手,对产品结构品牌策略业务布局进行战略上的调整,以寻求增长之道。但这种方式成本太过高昂,而且在实际执行中往往存在很多桎梏。
解决方案
基于DH Data Connector Framework(数据连接器框架),整合DMS、CRM等几大业务系统,构建统一、实时的数据分析平台;
建立全局业务看板,实时掌握整体销售额、利润、成本、库存等关键指标,通过全维度数据下钻,分析销售变化趋势,探寻销售增长点;
建立RD晨会看板,向各级销售人员及时传递各项关键数据,包括本月销售完成情况、销售目标完成率、店点分销情况等销售数据,以及在店时间、拜访数等行为数据,支撑销售及管理人员的日常工作;
根据该公司的管理层和销售团队组织架构,设置权限分配,满足各级人员查看和分析数据。
以上内容由DataHunter整理提供
『柒』 营销人员该如何搞定数据分析
【导读】随着精细化营销理念的普及,人们对营销的认识也逐渐深入,越来越多的营销人员认识到,营销不仅是一门艺术,也是一门科学。在市场快速变化的时代,基于数据进行分析,对市场需求、客户行为进行科学准确的掌控。那么,营销人员该如何搞定数据分析呢?
1、营销人员的常见问题
通过数据分析,营销人员可以找到以下问题的答案。
问题一:流量从哪里来?
互联网时代就是流量的时代,得流量者得天下,但是做了这么多营销推广,究竟哪个渠道是有效的渠道的质量又该如何比较。
问题二:吸引来的用户为什么没有转化?引流曝光率上去了,转化率却不高,苦于没有优化的方向。问题到底出在哪里?
问题三:ROI如何提升?
ROI是衡量营销效果的终极标准,也是营销人员考核的核心指标。如何提升ROI也是营销人员始终需要考虑的问题。
2、像搜索一样简单的数据分析工具
但是,如何才能更快地学会数据分析,提升自己的营销力,也成为了广大营销人员和营销团队的难题。毕竟,平时的工作时间紧任务重,想要做出好看实用的图表,又需要花费大量的时间。幸运的是,数据分析工具已经取得了很大的进步,学习成本也越来越低,只需要找到正确的工具,营销人员很快就能搞定数据分析。
而DataFocus就是这样一款为营销人员准备、学习成本低、只需10分钟就能上手做出精美图表的数据分析系统。
DataFocus和一般的数据分析工具不同,它最大的特点是可以用类自然语言来交互,只需像使用搜索引擎一样输入问题,DataFocus就能自动进行数据分析和可视化呈现。
3、数据导入到数据可视化
进入DataFocus之后,左侧有数据管理、搜索、数据看板等版块。数据管理可以上传和管理数据,搜索就是对数据进行分析和做各种图表;数据看板可以展示数据分析的结果。
关于营销人员该如何搞定数据分析,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
『捌』 销售数据分析主要从哪几方面进行
销售数据分析主要从:
1、单店货品销售数据分析
畅滞销款分析是单店货品销售数据分析中最简单、最直观、也是最重要的数据因素之一。畅销款即在一定时间内销量较大的款式,而滞销款则相反,是指在一定时间内销量较小的款式。
款式的畅滞销程度主要跟各款式的可支配库存数(即原订货加上可以补上的货品数量的总和)有关,比如某款销售非常好,但当初订货非常少,也无法补的到货,这样在很短的时间内就销售完了。
其总销售数量并不大,那么也不能算是畅销款,因为该款对店铺的利润贡献率不大。在畅滞销款的分析上,从时间上一般按每周、每月、每季;从款式上一般按整体款式和各类别款式来分。
2、单款销售生命周期分析
单款销售生命周期指单款销售的总时间跨度以及该时间段的销售状况(一般是指正价销售期)。单款销售周期分析一般是拿一些重点的款式(订货量和库存量较多的款式)来做分析,以判断出是否缺货或产生库存压力,从而及时做出对策。
单款的销售周期主要被季节和气候、款式自身销售特点、店铺内相近产品之间的竞争等三个因素所影响。单款的销售周期除了专业的销售软件以外,还可通过Excel软件,先选定该款的销售周期内每日销售件数,再通过插入图表功能,通过矩形图或折线图等看出其销售走势,从而判断其销售生命周期。
(8)怎么分析营销数据分析扩展阅读
针对同一市场不同品牌产品的销售差异分析,主要是为企业的销售策略提供建议和参考。针对不同市场的同一品牌产品的销售差异分析,主要是为企业的市场策略提供建议和参考。
微观销售分析,主要分析决定未能达到销售额的特定产品、地区等。
销售分析法的不足是没有反应企业相对于竞争者的状况,它没有能够剔除掉一般的环境因素对企业经营状况的影响。销售分析可以决定一个企业或公司的生产方向 。
『玖』 销售数据如何分析
关于销售数据分析,可以参考以下内容:
原本以为当上销售领导,可以拿着高薪与老板近距离接触,琐碎之事交给小弟,其实苦逼的生活才刚刚开始,老板经常要数据,每次都要重新做分析,恐怖!
换了一个数据分析工具,第一次做好分析之后,以后数据结果会自动定时更新哦(当然我连接了数据库数据、表单数据),整理了常见数据跟大家分享。
作为一个小领导,每天都要看下属的客户拜访情况,团队的成员会在协同软件上详细记录自己的拜访的情况,包括客户名称、行业和具体情况 。
地区分布:通过提供BDP个人版的数据地图,你能直观看到销售额的全国分布情况,还可钻取到各省的各个城市,一步一步分析问题,找到对应负责人,不断优化销售策略。
这些数据都是销售最经常关注的数据,做好图表后直接通过BDP的“分享”功能将数据结果分享给Boss,分析效率大大提高了呢,就有更多时间去管理销售业绩,优化营销策略,让业绩不断提高~~~
Ps:上面美观的数据图表均来自BDP个人版~
『拾』 如何做销售数据分析
销售数据分析工作涉及到销售成本分析(包括原材料成本、制造损版耗、运输成本等)、权销售利润分析(包括纯利润和毛利润)、客户满意度分析、客户需求分析等。
要进行销售数据分析,主要是统计和分类,必须借助一些工具,单靠人基本是无法完成的,尤其是客户较多或产品比较多的情况下,更是困难。
最简单的方法是使用excell,把数据都输进去,然后统计,分类,生产图表,这样就对数据有个比较直观的了解。
或者是使用ERP软件或其他一些管理软件,更简单,直接就可以生产图表。
然后利用一些统计学的知识对这些数据图表进行分析,了解销售状态,做出决策。