① BP網的功能及導高預測適用性
採用BP演算法的前饋神經網是神經網路在各個領域中應用最廣泛的一種,已經成功解決了大量實際問題。BP網的廣泛應用,歸因於其主要能力:具有非線性映射能力、泛化能力與容錯能力。
多層前饋網能學習和存儲大量輸入-輸出模式映射關系,即使不了解描述這種映射關系的數學方程,只要能提供足夠多的樣本模式對以供BP網路進行學習訓練,它便可以完成由n維輸入空間到m維輸出空間的非線性映射,即非線性映射能力。在工程上及許多技術領域中,對某一輸入 輸出系統常常積累了大量相關的輸入 輸出數據,但仍未掌握其內部蘊涵的規律,無法用數學方法來描述該規律。對難以得到解析解、缺乏專家經驗,但能夠表示和轉化為模式識別或非線性映射的這類問題,多層前饋網路具有無可比擬的優勢。通過訓練的多層前饋網路,將所提取的樣本對中的非線性映射關系存儲在權值矩陣中,當向網路輸入訓練時未曾見的非樣本數據時,網路也能完成由輸入空間向輸出空間的正確映射,即泛化能力,是衡量多層前饋網性能優劣的一個重要方面。由於權矩陣的調整是從大量的樣本中提取統計特性的過程,反映正確規律的知識來自全體樣本,個別樣本中的誤差不能左右對矩陣的調整。所以多層前饋網允許輸入樣本中帶有較大的誤差甚至個別錯誤,即容錯能力。
標准演算法在應用中具有訓練次數多,學習效率低,收斂速度慢,隱節點的選取缺乏理論指導,訓練時學習新樣本有遺忘舊樣本的趨勢,容易形成局部極小而得到局部全優等缺點,通過要權值調整公式中增加動量項α、自適應調節學習率η、在轉移函數中引入陡度因子λ等方法,有效改進了BP演算法,進一步提高其適用性。
因此,採用BP人工神經網路建立導水裂隙帶高度與其影響因子之間的非線性映射關系,並發揮BP網的泛化能力,輸入影響因子,對導水裂隙帶高度進行預測,具有無可比擬的優越性。
② bp神經網路提高泛化能力有幾種方法
常規的幾種增強泛化能力的方法,羅列如下:1、較多的輸入樣本可以提高泛化能力;
但不是太多,過多的樣本導致過度擬合,泛化能力不佳;樣本包括至少一次的轉折點數據。
2、隱含層神經元數量的選擇,不影響性能的前提下,盡量選擇小一點的神經元數量。隱含層節點太多,造成泛化能力下降,造火箭也只要幾十個到幾百個神經元,擬合幾百幾千個數據何必要那麼多神經元?
3、誤差小,則泛化能力好;誤差太小,則會過度擬合,泛化能力反而不佳。
4、學習率的選擇,特別是權值學習率,對網路性能有很大影響,太小則收斂速度很慢,且容易陷入局部極小化;太大則,收斂速度快,但易出現擺動,誤差難以縮小;一般權值學習率比要求誤差稍微稍大一點點;另外可以使用變動的學習率,在誤差大的時候增大學習率,等誤差小了再減小學習率,這樣可以收斂更快,學習效果更好,不易陷入局部極小化。
5、訓練時可以採用隨時終止法,即是誤差達到要求即終止訓練,以免過度擬合;可以調整局部權值,使局部未收斂的加快收斂。
③ 優化初始權值及閾值為什麼可以提高bp神經網路識別率
bp的學習過程就是不斷的網路訓練工程,而訓練的就是利用權值和閾值的激活函數計算輸出的。權值與輸入相乘,經過激活函數計算出的值與閾值比較,達到閾值的可輸出,不滿足的則返回繼續訓練。因此可以提高識別率。
④ 息差環比提升10BP。BP是什麼意思
季度招行的凈息差和凈利差分別為2.31%和2.24%,分別較08年第四季度收窄66 和65 個bp。 盡管手續費及傭金凈收入環比同比均出現下降,但在公允價值變動
⑤ 如何提高pb神經網路分類的准確率
要想提高BP神經網路分類的准確率,關鍵在於提高網路性能,使網路能夠反映數據的內部非線性規律。一般有以下幾種措施:
保證學習樣本質量。網路的輸出結果質量不可能超出原始訓練數據的質量,一定要保證樣本准確、典型、規模足夠大。
選定合適的輸入向量方案。輸入向量的配置方案不是固定的,可以添加自變數,增加因素。
選定適當的隱層節點數。過少學習能力不足,過多可能過擬合並且學習較慢。
調整參數,如學習率、學習目標等。
與其他演算法結合進行改進。如帶動量項的BP演算法、與GA演算法融合的GA-BP演算法等。
效果不理想時,可考慮增加隱層數量。
⑥ 在網上找人寫商業計劃書,優化BP靠譜嗎
寫BP的目的,除了做項 目的梳理和規劃,最核心的點還是為了融資,所以建議,最好是找資本公司去撰寫商業計劃書,除了對項目能有更好的理解,同時也有資本方面的資源,提高融資成功的幾率。創投名堂可以的,也做FA,好像也有幫助企業寫商業計劃書。
⑦ BP神經網路誤差如何提高
你好,誤差大,第一步需要嘗試的是做歸一化處理。有線性歸一化,有對數函數歸一化等等,這個你可以去網上搜索數據歸一化方法,有相關的代碼,應該。
第二部需要做出的改動是隱層節點數量,如果節點數量太多,那麼結果的隨機性就會很大,如果太少,那麼復雜數據的規律計算不出來。多少層節點最合適,這個目前除了一個一個試沒有更好的辦法。但是你會發現每一個相同的結構計算出的結果卻不盡相同,這個時候就需要考慮後續的問題。
第三步嘗試,變換transfer function。麻煩你查查字典,因為我不是用中文學的神經網路。我姑且翻譯成傳輸函數。傳輸函數在matlab中內建了3中 pureline logsig tansig。分別有不同的應用范圍。因為沒看到你的數據,我也不清楚具體應該推薦你用哪一種。不過你可以去網上搜索一下三種傳輸函數的特點。
如果有用請給「採納」謝謝。
⑧ 如何提高BP神經網路模型的預測精度
直接調用歸一化函數就可以啦,不會的話看一下這個帖子吧:遺傳演算法優化BP神經網路的案例(matlab代碼分享)
http://www.ilovematlab.cn/forum. ... &fromuid=679292
⑨ 求網路推廣良策
針對全國的吧,建議在網站做好之後先做關鍵字競價推廣,後期再做SEO優化。
自己不會的話就請專業的網路公司做吧