導航:首頁 > 營銷推廣 > 管式換熱器選擇千捷網路下拉推廣

管式換熱器選擇千捷網路下拉推廣

發布時間:2023-02-03 15:38:38

㈠ 列管式換熱器的設計

下列轉載的文章供你參考:列管式換熱器的設計和選用(1) 列管式換熱器的設計和選用應考慮的問題
◎ 冷、熱流體流動通道的選擇
具體選擇冷、熱流體流動通道的選擇
在換熱器中,哪一種流體流經管程,哪一種流經殼程,下列幾點可作為選擇的一般原則:
a) 不潔凈或易結垢的液體宜在管程,因管內清洗方便。
b) 腐蝕性流體宜在管程,以免管束和殼體同時受到腐蝕。
c) 壓力高的流體宜在管內,以免殼體承受壓力。
d) 飽和蒸汽宜走殼程,因飽和蒸汽比較清潔,表面傳熱系數與流速無關,而且冷凝液容易排出。
e) 流量小而粘度大( )的流體一般以殼程為宜,因在殼程Re>100即可達到湍流。但這不是絕對的,如流動阻力損失允許,將這類流體通入管內並採用多管程結構,亦可得到較高的表面傳熱系數。
f) 若兩流體溫差較大,對於剛性結構的換熱器,宜將表面傳熱系數大的流體通入殼程,以減小熱應力。
g) 需要被冷卻物料一般選殼程,便於散熱。
以上各點常常不可能同時滿足,應抓住主要方面,例如首先從流體的壓力、防腐蝕及清洗等要求來考慮,然後再從對阻力降低或其他要求予以校核選定。
◎ 流速的選擇
常用流速范圍流速的選擇
流體在管程或殼程中的流速,不僅直接影響表面傳熱系數,而且影響污垢熱阻,從而影響傳熱系數的大小,特別對於含有泥沙等較易沉積顆粒的流體,流速過低甚至可能導致管路堵塞,嚴重影響到設備的使用,但流速增大,又將使流體阻力增大。因此選擇適宜的流速是十分重要的。根據經驗,表4.7.1及表4.7.2列出一些工業上常用的流速范圍,以供參考。
表4.7.1 列管換熱器內常用的流速范圍流體種類流速 m/s管程殼程一般液體
宜結垢液體
氣 體0.5~0.3
>1
5~300.2~1.5
>0.5
3~15
表4.7.2 液體在列管換熱器中流速(在鋼管中)液體粘度 最大流速 m/s>1500
1000~500
500~100
100~53
35~1
>10.6
0.75
1.1
1.5
1.8
2.4◎ 流動方式的選擇
流動方式選擇流動方式的選擇
除逆流和並流之外,在列管式換熱器中冷、熱流體還可以作各種多管程多殼程的復雜流動。當流量一定時,管程或殼程越多,表面傳熱系數越大,對傳熱過程越有利。但是,採用多管程或多殼程必導致流體阻力損失,即輸送流體的動力費用增加。因此,在決定換熱器的程數時,需權衡傳熱和流體輸送兩方面的損失。
當採用多管程或多殼程時,列管式換熱器內的流動形式復雜,對數平均值的溫差要加以修正,具體修正方法見4.4節。
◎ 換熱管規格和排列的選擇
具體選擇 換熱管規格和排列的選擇
換熱管直徑越小,換熱器單位體積的傳熱面積越大。因此,對於潔凈的流體管徑可取小些。但對於不潔凈或易結垢的流體,管徑應取得大些,以免堵塞。考慮到製造和維修的方便,加熱管的規格不宜過多。目前我國試行的系列標准規定採用 和 兩種規格,對一般流體是適應的。此外,還有 ,φ57×2.5的無縫鋼管和φ25×2, 的耐酸不銹鋼管。
按選定的管徑和流速確定管子數目,再根據所需傳熱面積,求得管子長度。實際所取管長應根據出廠的鋼管長度合理截用。我國生產的鋼管長度多為6m、9m,故系列標准中管長有1.5,2,3,4.5,6和9m六種,其中以3m和6m更為普遍。同時,管子的長度又應與管徑相適應,一般管長與管徑之比,即L/D約為4~6。
管子的排列方式有等邊三角形和正方形兩種(圖4.7.11a,圖4.7.11b)。與正方形相比,等邊三角形排列比較緊湊,管外流體湍動程度高,表面傳熱系數大。正方形排列雖比較鬆散,傳熱效果也較差,但管外清洗方便,對易結垢流體更為適用。如將正方形排列的管束斜轉45°安裝(圖4.7.11c),可在一定程度上提高表面傳熱系數。
圖4.7.11 管子在管板上的排列
◎ 折流擋板
折流擋板間距的具體選擇折流擋板
安裝折流擋板的目的是為提高管外表面傳熱系數,為取得良好的效果,擋板的形狀和間距必須適當。
對圓缺形擋板而言,弓形缺口的大小對殼程流體的流動情況有重要影響。由圖4.7.12可以看出,弓形缺口太大或太小都會產生"死區",既不利於傳熱,又往往增加流體阻力。

a.切除過少b.切除適當 c.切除過多
圖4.7.12擋板切除對流動的影響
擋板的間距對殼體的流動亦有重要的影響。間距太大,不能保證流體垂直流過管束,使管外表面傳熱系數下降;間距太小,不便於製造和檢修,阻力損失亦大。一般取擋板間距為殼體內徑的0.2~1.0倍。我國系列標准中採用的擋板間距為:
固定管板式有100,150,200,300,450,600,700mm七種
浮頭式有100,150,200,250,300,350,450(或480),600mm八種。(2)流體通過換熱器時阻力的計算
換熱器管程及殼程的流動阻力,常常控制在一定允許范圍內。若計算結果超過允許值時,則應修改設計參數或重新選擇其他規格的換熱器。按一般經驗,對於液體常控制在104~105Pa范圍內,對於氣體則以103~104Pa為宜。此外,也可依據操作壓力不同而有所差別,參考下表。換熱器操作允許壓降△P換熱器操作壓力P(Pa)允許壓降△P<105 (絕對壓力)
0~105 (表壓)
>105 (表壓)0.1P
0.5P
>5×104 Pa◎ 管程阻力
管程阻力可按一般摩擦阻力計算式求得。
具體計算公式管程阻力損失
管程阻力損失可按一般摩擦阻力計算式求得。但管程總的阻力 應是各程直管摩擦阻力 、每程回彎阻力 以及進出口阻力 三項之和。而 相比之下常可忽略不計。因此可用下式計算管程總阻力損失 :

式中 每程直管阻力 ;
每程回彎阻力 ;
Ft-結構校正系數,無因次,對於 的管子,Ft=1.4,對於 的管子Ft=1.5;
Ns-串聯的殼程數,指串聯的換熱器數;
Np-管程數;
由此式可以看出,管程的阻力損失(或壓降)正比於管程數Np的三次方,即

對同一換熱器,若由單管程改為兩管程,阻力損失劇增為原來的8倍,而強制對流傳熱、湍流條件下的表面傳熱系數只增為原來的1.74倍;若由單管程改為四管程,阻力損失增為原來的64倍,而表面傳熱系數只增為原來的3倍。由此可見,在選擇換熱器管程數目時,應該兼顧傳熱與流體壓降兩方面的得失。
◎ 殼程阻力
對於殼程阻力的計算,由於流動狀態比較復雜,計算公式較多,計算結果相差較大。
埃索法計算公式殼程阻力損失
對於殼程阻力損失的計算,由於流動狀態比較復雜,提出的計算公式較多,所得計算結果相差不少。下面為埃索法計算殼程阻力損失的公式:

式中 -殼程總阻力損失, ;
-流過管束的阻力損失, ;
-流過折流板缺口的阻力損失, ;
Fs-殼程阻力結垢校正系數,對液體可取Fs=1.15,對氣體或可凝蒸汽取Fs=1.0;
Ns-殼程數;
又管束阻力損失
折流板缺口阻力損失
式中 -折流板數目;
-橫過管束中心的管子數,對於三角形排列的管束, ;對於正方形排列的管束, , 為每一殼程的管子總數;
B-折流板間距,m;
D-殼程直徑,m;
-按殼程流通截面積或按其截面積 計算所得的殼程流速,m/s;
F-管子排列形式對壓降的校正系數,對三角形排列F=0.5,對正方形排列F=0.3,對正方形斜轉45°,F=04;
-殼程流體摩擦系數,根據 ,由圖4.7.13求出(圖中t為管子中心距),當 亦可由下式求出:

因 , 正比於 ,由式4.7.4可知,管束阻力損失 ,基本上正比於 ,即

若擋板間距減小一半, 劇增8倍,而表面傳熱系數 只增加1.46倍。因此,在選擇擋板間距時,亦應兼顧傳熱與流體壓降兩方面的得失。同理,殼程數的選擇也應如此。
圖4.7.13 殼程摩擦系數f0與Re0的關系列管式換熱器的設計和選用(續)(3)列管式換熱器的設計和選用的計算步驟
設有流量為去qm,h的熱流體,需從溫度T1冷卻至T2,可用的冷卻介質入口溫度t1,出口溫度選定為t2。由此已知條件可算出換熱器的熱流量Q和逆流操作的平均推動力 。根據傳熱速率基本方程:

當Q和 已知時,要求取傳熱面積A必須知K和 則是由傳熱面積A的大小和換熱器結構決定的。可見,在冷、熱流體的流量及進、出口溫度皆已知的條件下,選用或設計換熱器必須通過試差計算,按以下步驟進行。
◎ 初選換熱器的規格尺寸
◆ 初步選定換熱器的流動方式,保證溫差修正系數 大於0.8,否則應改變流動方式,重新計算。
◆ 計算熱流量Q及平均傳熱溫差△tm,根據經驗估計總傳熱系數K估,初估傳熱面積A估。
◆ 選取管程適宜流速,估算管程數,並根據A估的數值,確定換熱管直徑、長度及排列。 ◎ 計算管、殼程阻力
在選擇管程流體與殼程流體以及初步確定了換熱器主要尺寸的基礎上,就可以計算管、殼程流速和阻力,看是否合理。或者先選定流速以確定管程數NP和折流板間距B再計算壓力降是否合理。這時NP與B是可以調整的參數,如仍不能滿足要求,可另選殼徑再進行計算,直到合理為止。
◎ 核算總傳熱系數
分別計算管、殼程表面傳熱系數,確定污垢熱阻,求出總傳系數K計,並與估算時所取用的傳熱系數K估進行比較。如果相差較多,應重新估算。
◎ 計算傳熱面積並求裕度
根據計算的K計值、熱流量Q及平均溫度差△tm,由總傳熱速率方程計算傳熱面積A0,一般應使所選用或設計的實際傳熱面積AP大於A020%左右為宜。即裕度為20%左右,裕度的計算式為:
換熱器的傳熱強化途徑如欲強化現有傳熱設備,開發新型高效的傳熱設備,以便在較小的設備上獲得更大的生產能力和效益,成為現代工業發展的一個重要問題。
依總傳熱速率方程:

強化方法:提高 K、A、 均可強化傳熱。
◎提高傳熱系數K

熱阻主要集中於 較小的一側,提高 小的一側有效。
◆ 降低污垢熱阻
◆ 提高表面傳熱系數
提高 的方法:
無相變化傳熱:
1) 加大流速;
2)人工粗造表面;
3)擾流元件。 有相變化傳熱:
蒸汽冷凝 :
1)滴狀冷凝,
2)不凝氣體排放,
3)氣液流向一致 ,
4)合理布置冷凝面,
5)利用表面張力 (溝槽 ,金屬絲)液體沸騰:
1)保持核狀沸騰,
2) 製造人工表面,增加汽化核心數。
◎ 提高傳熱推動力
加熱蒸汽P ,
◎ 改變傳熱面積A
關於傳熱面積A的改變,不以增加換熱器台數,改變換熱器的尺寸來加大傳熱面積A,而是通過對傳熱面的改造,如開槽及加翅片、以不同異形管代替光滑圓管等措施來加大傳熱面積以強化傳熱過程。

㈡ 各種換熱器的工作原理和特點

各種換熱器 的 工作原理和特點

一、換熱器

1、U形管式換熱器

每根管子都彎成U形,固定在同一側管板上,每根管可以自由伸縮,也是為了消除熱應力。

性能特點:

(1)優點

此類換熱器的特點是管束可以自由伸縮,不會因管殼之間的溫差而產生熱應力,熱補償性能好;管程為雙管程,流程較長,流速較高,傳熱性能較好;承壓能力強;管束可從殼體內抽出,便於檢修和清洗,且結構簡單,造價便宜。

(2)缺點

是管內清洗不便,管束中間部分的管子難以更換,又因最內層管子彎曲半徑不能太小,在管板中心部分布管不緊湊,所以管子數不能太多,且管束中心部分存在間隙,使殼程流體易於短路而影響殼程換熱。

此外,為了彌補彎管後管壁的減薄,直管部分需用壁較厚的管子。這就影響了它的使用場合,僅宜用於管殼壁溫相差較大,或殼程介質易結垢而管程介質清潔及不易結垢,高溫、高壓、腐蝕性強的情形。

2、沉浸式蛇管換熱器

沉浸式蛇管換熱器以蛇形管作為傳熱元件的換熱器,是間壁式換熱器種類之一。根據管外流體冷卻方式的不同,蛇管式換熱器又分為沉浸式和噴淋式。

(1)優點

這是一種古老的換熱設備。它結構簡單,製造、安裝、清洗和維修方便,便於防腐,能承受高壓,價格低廉,又特別適用於高壓流體的冷卻、冷凝,所以現代仍得到廣泛應用。

(2)缺點

由於容器體積比管子的體積大得多、笨重、單位傳熱面積金屬耗量多,因此管外流體的表面傳熱系數較小。為提高傳熱系數,容器內可安裝攪拌器。

3、列管式換熱器

冷流體走管內,熱流體經折流板走管外,冷、熱流體通過間壁換熱。

性能特點:

列管式換熱器的結構比較簡單、緊湊、造價便宜,但管外不能機械清洗。此種換熱器管束連接在管板上,管板分別焊在外殼兩端,並在其上連接有頂蓋,頂蓋和殼體裝有流體進出口接管。通常在管外裝置一系列垂直於管束的擋板。同時管子和管板與外殼的連接都是剛性的,而管內管外是兩種不同溫度的流體。因此,當管壁與殼壁溫差較大時,由於兩者的熱膨脹不同,產生了很大的溫差應力,以至管子扭彎或使管子從管板上松脫,甚至毀壞換熱器。

為了克服溫差應力必須有溫差補償裝置,一般在管壁與殼壁溫度相差50℃以上時,為安全起見,換熱器應有溫差補償裝置。但補償裝置(膨脹節)只能用在殼壁與管壁溫差低於60~70℃和殼程流體壓強不高的情況。一般殼程壓強超過0.6MPa時,由於補償圈過厚,難以伸縮,失去溫差補償的作用,就應考慮其它結構。

SPEET無源動力強化換熱系統,是由深圳中創鼎新工業節能智能化技術有限公司自主研發的一項革新性的工業高效節能技術,可廣泛應用於化工、冶金、石油、制鹽、製糖、造紙、制葯、海水淡化、製冷等行業的列管式換熱器,有效解決列管式換熱系統因設計或運行等原因導致的換熱效率不足的問題,有效提高換熱效率20%以上。

與傳統的換熱器清洗方式相比,SPEET具有無腐蝕、無污染、免拆卸、對設備無損傷、高可靠性、高效節能的優勢。

SPEET工作原理為,沿著介質流向將SPEET紐帶插入到每一根換熱管中,當設備運行時,利用介質自身流速驅動SPEET裝置不停地快速旋轉,一方面打破管內溫度分層,將流體邊界滯留層厚度降低一個數量級,實現強化換熱;另一方面通過強化擾流和對管壁不規則刮掃,減少垢的析出,阻止垢的附著,加快垢的剝蝕,防止換熱管壁結晶或結疤,從而實現在線除垢防垢。通過這兩方面共同作用,將換熱器的換熱系數K值提高20%-50%以上,從而達到節能降耗的目的。

SPEET安裝便捷,無需停工或改動換熱器主體;無需專人維護,節省化學清洗及人工清洗費用,投資回報周期6到12個月,經濟效益十分顯著,大幅提升大工業用戶能源利用效率,助力工業企業低碳綠色發展。

4、螺旋板式換熱器

由兩塊相互平行的鋼板,卷製成相互隔開的螺旋形流道。螺旋板的兩端焊有蓋板。冷熱流體分別在兩流道內流動。

性能特點:

(1)傳熱效率高(性能好)

一般認為螺旋板式換熱器的傳熱效率為列管式換熱器的1~3倍。等截面單通道不存在流動死區,定距柱及螺旋通道對流動的擾動降低了流體的臨界雷諾數,水-水換熱時,螺旋板式換熱器的傳熱系數最大可達3000W/(㎡·K)。

(2)有效回收低溫熱能

螺旋板式換熱器由兩張卷制而成,進行余熱回收,充分利用低溫熱能。

(3)運行可靠性強

不可拆式螺旋板式換熱器螺旋通道的端面採用焊接密封,因而具有較高的密封性,保證兩種工作介質不混合。

(4)阻力小

在殼體上的接管採用切向結構。比較低的壓力損失,處理大容量蒸汽或氣體;有自清刷能力,因其介質呈螺旋型流動,污垢不易沉積;清洗容易,可用蒸汽或鹼液沖洗,簡單易行,適合安裝清洗裝置;介質走單通道,允許流速比其他換熱器高。

(5)可多台組合使用

單台設備不能滿足使用要求時,可以多台組合使用。但組合時,必須符合下列規定:並聯組合、串聯組合,設備和通道間距相同。混合組合:一個通道並聯,一個通道串聯。

5、噴淋式換熱器

熱流體在裸露的管中流過,冷卻水噴淋流過蛇管。

性能特點:

這種換熱器是將換熱管成排地固定在鋼架上,熱流體在管內流動,冷卻水從上方噴淋裝置均勻淋下,故也稱噴淋式冷卻器。噴淋式換熱器的管外是一層湍動程度較高的液膜,管外給熱系數較沉浸式增大很多。

另外,這種換熱器大多放置在空氣流通之處,冷卻水的蒸發亦帶走一部分熱量,可起到降低冷卻水溫度,增大傳熱推動力的作用。因此,和沉浸式相比,噴淋式換熱器的傳熱效果大有改善。

6、熱管換熱器

一根密封的金屬管子,管內壁覆蓋一層有毛細結構材料作成的芯網,其中間是空的。管內裝有一定量的熱載體(如液氨、氟利昂等),被氣化,流向冷端,蒸汽在冷端被冷凝,放出汽化潛熱,而加熱了冷流體。冷凝液又流回熱端,如此反復。

性能特點:

(1)熱管換熱器可以通過換熱器的中隔板使冷熱流體完全分開,在運行過程中,單根熱管因為磨損、腐蝕、超溫等原因發生破壞時,基本不影響換熱器運行。熱管換熱器用於易然、易爆、腐蝕性強的流體,換熱場合具有很高的可靠性。

(2)熱管換熱器的冷、熱流體完全分開流動,可以比較容易的實現冷、熱流體的逆流換熱。冷熱流體均在管外流動,由於管外流動的換熱系數遠高於管內流動的換熱系數,用於品位較低的熱能回收場合非常經濟。

(3)對於含塵量較高的流體,熱管換熱器可以通過結構的變化、擴展受熱面等形式,解決換熱器的磨損和堵灰問題。

(4)熱管換熱器用於帶有腐蝕性的煙氣余熱回收時,可以通過調整蒸發段、冷凝段的傳熱面積來調整熱管管壁溫度,使熱管盡可能避開最大的腐蝕區域。

7、套管式換熱器

冷、熱流體分別在內管和套管中流動並換熱。

(1)優點

這種換熱器具有若干突出的優點,所以至今仍被廣泛用於石油化工等工業部門。

結構簡單,傳熱面積增減自如。因為它由標准構件組合而成,安裝時,無需另外加工。傳熱效能高。它是一種純逆流型換熱器,同時還可以選取合適的截面尺寸,以提高流體速度,增大兩側流體的傳熱系數,因此它的傳熱效果好。液-液換熱時,傳熱系數為 870~1750W/(m2·℃)。這一點特別適合於高壓、小流量、低傳熱系數流體的換熱。套管式換熱器的缺點是佔地面積大;單位傳熱面積金屬耗量多,約為管殼式換熱器的五倍;管接頭多,易泄漏;流阻大。結構簡單,工作適應范圍大,傳熱面積增減方便,兩側流體均可提高流速,使傳熱面的兩側都可以有較高的傳熱系數,是單位傳熱面的金屬消耗量大,為增大傳熱面積、提高傳熱效果,可在內管外壁加設各種形式的翅片,並在內管中加設刮膜擾動裝置,以適應高粘度流體的換熱。可以根據安裝位置任意改變形態,利於安裝。(2)缺點

檢修、清洗和拆卸都較麻煩,在可拆連接處容易造成泄漏。生產中,有較多材料選擇受限,由於套管式換熱器大多是內管中不允許有焊接,因為焊接會造成受熱膨脹開裂,而套管式換熱器大多數為了節省空間選擇,彎制,盤製成蛇管形態,故有較多特殊的耐腐蝕材料無法正常生產。套管換熱器國內還沒有形成統一的焊接標准,各個企業都是根據其它換熱產品經驗選擇焊接方式,所以,套管式換熱器的焊接處,出現各類問題司空見慣,需要經常注意檢查,保養。

二、具有補償圈的換熱器

1、浮頭式換熱器

兩端的管板,有一段不與殼體相連,可以在管長方向自由浮動,當殼體與管束因溫度不同而引起不同的熱膨脹時,可以消除熱應力。

冷流體入口熱流體入口

(1)優點

管束可以抽出,以方便清洗管、殼程;介質間溫差不受限制;可在高溫、高壓下工作;可用於結垢比較嚴重的場合;可用於管程易腐蝕場合。 (2)缺點

小浮頭易發生內漏;金屬材料耗量大,成本高20%;結構復雜。 2、夾套式換熱器

夾套式換熱器是間壁式換熱器的一種,在容器外壁安裝夾套製成。

性能特點:

結構簡單,但其加熱面受容器壁面限制,傳熱系數也不高。為提高傳熱系數且使釜內液體受熱均勻,可在釜內安裝攪拌器。當夾套中通入冷卻水或無相變的加熱劑時,亦可在夾套中設置螺旋隔板或其它增加湍動的措施,以提高夾套一側的給熱系數。為補充傳熱面的不足,也可在釜內部安裝蛇管。夾套式換熱器廣泛用於反應過程的加熱和冷卻。

3、板翅式換熱器

由隔板、肋片和側條組成單元體,多個單元體經逆流或錯流組裝為組裝件,再將帶有集流出口的集流箱焊接到組裝件上。由於材料輕薄,換熱面積與換熱器體積之比可達4000 m2/ m3。

性能特點:

(1)傳熱效率高,由於肋片對流體的擾動使邊界層不斷破裂,因而具有較大的換熱系數;同時由於隔板、肋片很薄,具有高導熱性,所以使得板肋式換熱器可以達到很高的效率。

(2)緊湊,由於板肋式換熱器具有擴展的二次表面,使得它的比表面積可達到1000 m2/ m3 。

(3)輕巧,原因為緊湊且多為鋁合金製造,現在鋼制,銅制,復合材料等的也已經批量生產。

(4)適應性強,板肋式換熱器可適用於:氣-氣、氣-液、液-液、各種流體之間的換熱以及發生集態變化的相變換熱。通過流道的布置和組合能夠適應:逆流、錯流、多股流、多程流等不同的換熱工況。通過單元間串聯、並聯、串並聯的組合,可以滿足大型設備的換熱需要。工業上可以定型、批量生產以降低成本,通過積木式組合擴大互換性。

(5)製造工藝要求嚴格,工藝過程復雜。

(6)容易堵塞,不耐腐蝕,清洗檢修很困難,故只能用於換熱介質干凈、無腐蝕、不易結垢、不易沉積、不易堵塞的場合。

4、渦流熱膜換熱器

流熱膜換熱器體積只有傳統管殼式換熱器的1/5,採用全不銹鋼焊接結構。既具有釺焊板式換熱器體積小、耐高溫的優勢,又克服了框架板式換熱器膠條老化、維護費用高的缺陷,它採用經納米技術處理的不銹鋼渦流管作為換熱元件,極大提高了換熱器的整體性能。

性能特點:

高效節能,該換熱器傳熱系數為6000~8000W/(m2·℃);全不銹鋼製作,使用壽命長,可達20a以上,十年內出現換熱器質量問題免費更換;改層流為湍流,提高了換熱效率,降低了熱阻;換熱速度快,耐高溫(400℃),耐高壓(2.5MPa);結構緊湊,佔地面積小,重量輕,安裝方便,節約土建投資;設計靈活,規格齊全,實用針對性強,節約資金;應用條件廣泛,適用較大的壓力、溫度范圍和多種介質熱交換;維護費用低,易操作,清垢周期長,清洗方便;採用納米熱膜技術,顯著增大傳熱系數;應用領域廣闊,可廣泛用於熱電、廠礦、石油化工、城市集中供熱、食品醫葯、能源電子、機械輕工等領域。

㈢ 換熱器如何選擇

換熱器是指兩種不同溫度的流體進行熱量交換的設備。換熱器作為傳熱設備被廣泛用於耗能用量大的領域。隨著節能技術的飛速發展,換熱器的種類越來越多。適用於不同介質、不同工況、不同溫度、不同壓力的換熱器,結構型式也不同,換熱器的具體分類如下: 一、換熱器按傳熱原理可分為:1、表面式換熱器表面式換熱器是溫度不同的兩種流體在被壁面分開的空間里流動,通過壁面的導熱和流體在壁表面對流,兩種流體之間進行換熱。表面式換熱器有管殼式、套管式和其他型式的換熱器。2、蓄熱式換熱器蓄熱式換熱器通過固體物質構成的蓄熱體,把熱量從高溫流體傳遞給低溫流體,熱介質先通過加熱固體物質達到一定溫度後,冷介質再通過固體物質被加熱,使之達到熱量傳遞的目的。蓄熱式換熱器有旋轉式、閥門切換式等。3、流體連接間接式換熱器流體連接間接式換熱器,是把兩個表面式換熱器由在其中循環的熱載體連接起來的換熱器,熱載體在高溫流體換熱器和低溫流體之間循環,在高溫流體接受熱量,在低溫流體換熱器把熱量釋放給低溫流體。4、直接接觸式換熱器直接接觸式換熱器是兩種流體直接接觸進行換熱的設備,例如,冷水塔、氣體冷凝器等。 二、換熱器按用途分為: 1、加熱器 加熱器是把流體加熱到必要的溫度,但加熱流體沒有發生相的變化。 2、預熱器 預熱器預先加熱流體,為工序操作提供標準的工藝參數。 3、過熱器 過熱器用於把流體(工藝氣或蒸汽)加熱到過熱狀態。 4、蒸發器 蒸發器用於加熱流體,達到沸點以上溫度,使其流體蒸發,一般有相的變化。 三、按換熱器的結構可分為: 可分為:浮頭式換熱器、固定管板式換熱器、U形管板換熱器、板式換熱器等。

㈣ 管式熱交換器原理圖及分類詳解

隨著人們對熱能認識的加深,需求越來越大,很多人在工作或者生活中常會聽到會見到這么一個東西——熱交換器。熱交換器是指將熱流體內的熱能傳遞到冷流體的器具,以滿足規定的工藝要求的裝置,是對流傳熱及熱傳導的一種工業應用。簡單來說也就是一種內部接觸面較大又相對密封的一種容器。家用的熱交換器比較常見,咱們今天就說一下在工業領域中應用比較廣泛的管式熱交換器。


基本概念

在管式換熱器內進行換熱的兩種流體,一種在管內流動,其行程稱為管程;一種在管外流動,其行程稱為殼程。管束的壁面即為傳熱面。為提高管外流體給熱系數,通常在殼體內安裝一定數量的橫向折流檔板。折流檔板不僅可防止流體短路,增加流體速度,還迫使流體按規定路徑多次錯流通過管束,使湍動程度大為增加。常用的檔板有圓缺形和圓盤形兩種,前者應用更為廣泛。

流體在管內每通過管束一次稱為一個管程,每通過殼體一次稱為一個殼程。為提高管內流體的速度,可在兩端封頭內設置適當隔板,將全部管子平均分隔成若干組。這樣,流體可每次只通過部分管子而往返管束多次,稱為多管程。同樣,為提高管外流速,可在殼體內安裝縱向檔板使流體多次通過殼體空間,稱多殼程。在管式換熱器內,由於管內外流體溫度不同,殼體和管束的溫度也不同。


基本分類

固定管板式

固定管板式換熱器是將兩端管板直接與殼體焊接在一起。主要由外殼、管板、管束、封頭等主要部件組成。殼體中設置有管束,管束兩端採用焊接、脹接或脹焊並有的方法將管子固定在管板上,管板外周圍和封頭法蘭用螺栓緊固。固定管板式換熱器的結構簡單、造價低廉、製造容易、管程清洗檢修方便,但殼程清洗困難,管束製造後有溫差應力存在。當換熱管與殼體有較大溫差時,殼體上還應設有膨脹節。


浮頭式

浮頭式換熱器一端管板固定在殼體與管箱之間,另一端管板可以在殼體內自由移動,也就是殼體和管束熱膨脹可自由。故管束和殼體之間沒有溫差應力。一般浮頭可拆卸,管束可以自由地抽出和裝入。浮頭式換熱器的這種結構可以用在管束和殼體有較大溫差的工況。管束和殼體的清洗和檢修較為方便,但它的結構相對比較復雜,對密封的要求也比較高。


「U」型管式

U形管式換熱器是將換熱管煒成U形,兩端固定在同一管板上。由於殼體和換熱管分開,換熱管束可以自由伸縮,不會由於介質的溫差而產生溫差應力。U形管換熱器只有一塊管板,沒有浮頭,結構比較簡單。管束可以自由的抽出和裝入,方便清洗,具有浮頭式換熱器的優點,但由於換熱管做成半徑不等的U形彎,最外層換熱管損壞後可以更換外,其它管子損壞只能堵管。同時,它與固定管板式換熱器相比,由於換熱管受彎曲半徑的限制它的管束中心部分存在空隙,流體很容易走短路,影響了傳熱效果。


以上就是工業中常用的管式熱交換器的分類與細分分類下的結構原理圖,原理簡單而設計上又比較復雜,工藝、材質要求也較高,目的就是為了提升熱交換器的換熱效率。然而管式熱交換器因為其特殊的管狀構造,在使用過程中使用的流體肯定包含一些雜質等,很難徹底清洗。這也就造成了企業對於資源、時間、人力的浪費,今後在清洗方面將是主要發展的方向。

㈤ 如何選換熱器

尊敬的客戶 你們好!就如何選換熱器,提如下幾點建議。第一、根據換熱器媒質選換熱器結構形式;閉式循環系統方可選用板式換熱器;水質較差的場合選浮動盤管式換熱器。第二、後期需要擴展換熱量的場合選板式換熱器較好。第三、選擇換熱器面積。第四、換熱器的選用和設計計算步驟。估算傳熱面積,並初選換熱器型號確定兩流體在換熱器中流動通道。(1)根據傳熱任務,計算傳熱量;(2)確定流體在換熱器兩端的溫度,計算定性溫度,並確定流體物性;(3)根據兩流體的溫度差,確定換熱器的型式;(4)計算平均溫度差,並根據溫度差校正系數不小於0.8的原則,確定殼程數或調整加熱介質或冷卻介質的終溫;(5)依據總傳熱系數的經驗范圍或生產實際情況,選取總傳熱系數;(6)由總傳熱速率方程估算傳熱面積,並確定換熱器的基本尺寸或按系列標准選擇設備規格。第五、計算管程、殼程阻力。核算總傳熱系數和傳熱面積選用的換熱器實際傳熱面積應比計算所需的傳熱面積約大10%--25%。第六、如需幫助歡迎致電我司技術部,同時也希望賽唯的換熱器給您帶來滿意的效果。 廣州賽唯換熱器

㈥ 管殼式換熱器的介紹

管殼式換熱器又稱管式換熱器。是以封閉在殼體中管束的壁面作為傳熱面的間壁式換熱器。這種換熱器結構較簡單,操作可靠,可用各種結構材料製造,能在高溫、高壓下使用,是目前應用最廣的類型。

用途: 適用於電鍍、電解、磷化、除油、酸洗、化學鍍鎳磷、陽極氧化、鋁泊、冶煉、電子、化工、醫葯、食品等行業中的液相加熱、冷卻、蒸發、濃縮等。

管殼式換熱器由殼體、傳熱管束、管板、折流板(擋板)和管箱等部件組成。殼體多為圓筒形,內部裝有管束,管束兩端固定在管板上。進行換熱的冷熱兩種流體,一種在管內流動,稱為管程流體;另一種在管外流動,稱為殼程流體。為提高管外流體的傳熱分系數,通常在殼體內安裝若干擋板。擋板可提高殼程流體速度,迫使流體按規定路程多次橫向通過管束,增強流體湍流程度。換熱管在管板上可按等邊三角形或正方形排列。等邊三角形排列較緊湊,管外流體湍動程度高,傳熱分系數大;正方形排列則管外清洗方便,適用於易結垢的流體。

流體每通過管束一次稱為一個管程;每通過殼體一次稱為一個殼程。圖示為最簡單的單殼程單管程換熱器,簡稱為1-1型換熱器。為提高管內流體速度,可在兩端管箱內設置隔板,將全部管子均分成若干組。這樣流體每次只通過部分管子,因而在管束中往返多次,這稱為多管程。同樣,為提高管外流速,也可在殼體內安裝縱向擋板,迫使流體多次通過殼體空間,稱為多殼程。多管程與多殼程可配合應用。

類型

管殼式換熱器由於管內外流體的溫度不同,因之換熱器的殼體與管束的溫度也不同。如果兩溫度相差很大,換熱器內將產生很大熱應力,導致管子彎曲、斷裂,或從管板上拉脫。因此,當管束與殼體溫度差超過50℃時,需採取適當補償措施,以消除或減少熱應力。根據所採用的補償措施,管殼式換熱器可分為以下幾種主要類型:

①固定管板式換熱器管束兩端的管板與殼體聯成一體,結構簡單,但只適用於冷熱流體溫度差不大,且殼程不需機械清洗時的換熱操作。當溫度差稍大而殼程壓力又不太高時,可在殼體上安裝有彈性的補償圈,以減小熱應力。

②浮頭式換熱器管束一端的管板可自由浮動,完全消除了熱應力;且整個管束可從殼體中抽出,便於機械清洗和檢修。浮頭式換熱器的應用較廣,但結構比較復雜,造價較高。

③U型管式換熱器每根換熱管皆彎成U形,兩端分別固定在同一管板上下兩區,藉助於管箱內的隔板分成進出口兩室。此種換熱器完全消除了熱應力,結構比浮頭式簡單,但管程不易清洗。

④渦流熱膜換熱器渦流熱膜換熱器採用最新的渦流熱膜傳熱技術,通過改變流體運動狀態來增加傳熱效果,當介質經過渦流管表面時,強力沖刷管子表面,從而提高換熱效率。最高可達10000W/m2℃。同時這種結構實現了耐腐蝕、耐高溫、耐高壓、防結垢功能。其它類型的換熱器的流體通道為固定方向流形式,在換熱管表面形成繞流,對流換熱系數降低。

據【換熱設備推廣中心】的資料顯示,渦流熱膜換熱器的最大特點在於經濟性和安全性統一。由於考慮了換熱管之間,換熱管和殼體之間流動關系,不再使用折流板強行阻擋的方式逼出湍流,而是靠換熱管之間自然誘導形成交替漩渦流,並在保證換熱管不互相摩擦的前提下保持應有的顫動力度。換熱管的剛性和柔性配置良好,不會彼此碰撞,既克服了浮動盤管換熱器之間相互碰撞造成損傷的問題,又避免了普通管殼式換熱器易結垢的問題。

性能特點

1.高效節能,該換熱器傳熱系數為6000-8000W/m2.0C。

2.全不銹鋼製作,使用壽命長,可達20年以上。

3.改層流為湍流,提高了換熱效率,降低了熱阻。

4.換熱速度快,耐高溫(400℃),耐高壓(2.5Mpa)。

5.結構緊湊,佔地面積小,重量輕,安裝方便,節約土建投資。

6.設計靈活,規格齊全,實用針對性強,節約資金。

7.應用條件廣泛,適用較大的壓力、溫度范圍和多種介質熱交換。

8.維護費用低,易操作,清垢周期長,清洗方便。

9.採用納米熱膜技術,顯著增大傳熱系數。

10.應用領域廣闊,可廣泛用於熱電、廠礦、石油化工、城市集中供熱、食品醫葯、能源電子、機械輕工等領域。

閱讀全文

與管式換熱器選擇千捷網路下拉推廣相關的資料

熱點內容
未刪減版電影網 瀏覽:221
文明用語禮儀培訓實施方案 瀏覽:947
電影裡面有一個人可以隨大隨小 瀏覽:647
電視劇顯示限免是什麼意思 瀏覽:887
愛情電影網aqdys 瀏覽:694
林正英電影國語在線免費觀看 瀏覽:900
華語電影在線 瀏覽:433
鬼片在線觀看免費觀看內地 瀏覽:202
什麼什麼電影可以免費在線觀看 瀏覽:893
電子商務具備的能力 瀏覽:93
20歲年輕人愛情片 瀏覽:765
家教高級課程兩個老師都叫什麼 瀏覽:573
大胸誘惑電影有哪些 瀏覽:706
萬森電子商務有限公司 瀏覽:172
美術機構升班策劃方案 瀏覽:514
徐靜蕾大尺度電影 瀏覽:745
國網公司新提職幹部培訓方案 瀏覽:447
湖南單招電子商務專業嗎 瀏覽:652
生化危機1電影資源 瀏覽:527
海綿寶寶3D 2015年 電影 瀏覽:31