❶ 某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元( m≥0)
(1)由题意知,当m=0时,x=1,∴1=3-k,即k=2,∴x=3- ; 每件产品的销售价格为版1.5× (万元), ∴利润函权数y=x[1.5× ]-(8+16x+m) =4+8x-m=4+8(3- )-m =-[ +(m+1)]+29(m≥0). (2)因为利润函数y=-[ +(m+1)]+29(m≥0), 所以,当m≥0时, +(m+1)≥2
❷ 某厂家拟在2004年举行促销活动
(1) 总的产品成本=8+16x 平均每件产品成本=(8+16x)/x 产品利润=总销售价格-总开销=x*1.5(8+16x)/x-(8+16x+m)=8x-m-4=8[3-2/(m+1)]-m-4=20-16/(m+1)-m 即y=20-16/(m+1)-m (2)求该产品利润的最专大值,即属求函数y=20-16/(m+1)-m的最大值 y=20-16/(m+1)-m=21-[16/(m+1)+m+1] ∵m≥0,∴m+1≥1>0 由重要不等式(*),可得 y≤21-8=13,当且仅当m=3时,y=13 ∴2004年该产品利润的最大值为13万,此时促销费为3万元 注:(*)重要不等式 设a,b为任意实数,则(a^2-b^2)^2≥0恒成立,即 a^2-2ab+b^2≥0,即 a^2+b^2≥2ab,当且仅当a=b时a^2+b^2=2ab。 此不等式叫做均值不等式 若a,b≥0 设x=√a,y=√b 由均值不等式,得x^2+y^2≥2xy,即 a+b≥2√(ab),当且仅当a=b时a+b=2√(ab) 此不等式为重要不等式
❸ 某厂家拟在2012年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m万元(
(I)由题意,来不搞促源销活动,则该产品的年销量只能是1万件,知m=0时,x=1(万件), 所以1=3-k,所以k=2----------------(2分) 从而x=3? ,当m=9万元时,x=2.8 综上得,k=2,年促销费用为9万元时,该厂的年产量为2.8万件.-----------------(4分) (II)由(I1)知,x=3? ,又每件产品的销售价格为1.5× 元, 所以2012年的利润为y=1.5× ×x?(8+16x+m)=4+8x-m=28- -m(m≥0);-----------(9分) (Ⅲ)由(II)得,y=28- -m=29-[ +(m+1)], ∵m≥0时, +(m+1)≥2
❹ 某厂家2008年拟举行促销活动,经调查测算,该产品的年销售量m万件(即该厂的年产量)与促销费用x万元(x
(Ⅰ)依题意,得:利润函数y=(1.5-1)C-x=0.5(16m+8)-x =8m+4-x=8 (3- ) +4-x=28- -x(其中x≥0); (Ⅱ)由(Ⅰ)得: y=29-( +x+1)≤版29-2
❺ 为响应国家扩大内需的政策,某厂家拟在2014年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量
(1)由题意有1=7- ,得k=6,故x=7? . 故y=1.5× ×x-(6+12x)-t, =3+6x-t=3+6(7? )-t=45- -t(t≥0). 即有y=45- -t=45-( +t+1)+1, 由基内本不等式得, +t+1≥2
❻ 为响应国家扩大内需的政策,某厂家拟在2013年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量
(1)由题意有1=4- ,得k=3,故x=4- . ∴y=1.5× ×x-(6+12x)-t=3+6x-t=3+6(4- )-t=27- -t(t≥0). (2)由(1)知y=27- =27.5-[ +(t+ )] ∵ +(t+ )≥2
❼ 某厂家拟在2012年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元
(1)由题意可知,当m=0时,x=1,∴1=3-k,即k=2,∴x=3- , 每件产品的销售价格为1.5× (万元), ∴利润函数y=x×1.5× -(8+16x+m)=4+8x-m=4+8(3- )-m=-[ +(m+1)]+29(m≥0), (2)当m≥0时, +(m+1)≥2
❽ (本题满分12分)某厂家拟在2011年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件
解(Ⅰ)由题意可知当m=0时,x=1(万件),∴1=3-k  =m+1即m=3(万元)时,等号成立……………11分 答:该厂家2011年的促销费用投入为3万元时,厂家的利润最大。………12分
❾ 某厂家拟在2013年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量) 万件与年促销费用 万
(1)y  (2)3万来
❿ 某厂家拟在2013年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m(m
(1)由题意知,抄袭当m=0时,x=1, ∴1=3-k,即k=2, ∴x=3? ; 每件产品的销售价格为1.5× (万元), ∴利润函数y=x[1.5× ]-(8+16x+m) =4+8x-m=4+8(3- )-m =-[ +(m+1)]+29(m≥0). (2)因为利润函数y=-[ +(m+1)]+29(m≥0), 所以,当m≥0时, +(m+1)≥2
与某厂家拟举行促销活动相关的资料
热点内容
建行促销方案
发布:2025-08-23 02:55:55
浏览:510
|
| | |
|
|
| | |
| |