⑴ 浅谈电子商务的数据分析
浅谈电子商务的数据分析
随着科学技术的发展,电子商务技术也在逐步的提升,人们在工作中需要的数据处理也越来越多。下面我们就以电子商务为例,为大家简单的介绍一下进行数据分析的目的与流程。
一、进行数据分析的目的
人们在工作和生活中需要对数据进行分析,主要有两个方面:
1、为了更好的发现问题,并且在发现问题的过程中,找到问题的根源,通过采用具体可行有效的办法,对存在的问题进行解决。
2、为了总结发展趋势。这里的数据分析就是在以往的数据基础上,实现对总体数据的分析与总结,主要表现在为网络营销提供解决支持的办法。
数据分析在电子商务里面运用的十分广泛,可以依据相关的规定,对这些数据进行相关的分类,在依据实际的运营情况下,保证网站的可持续发展。下面我们就来具体的分析一下进行数据分析的流程。
二、进行数据分析的流程
在电子商务方面,进行的数据分析可以分为以下几个方面。
1、对关键数据进行分析
由于不同的电子商务,其定位及针对的客户群体不同,因此其实际的运营效果也不一样,因此需要对网站内的关键数据进行分析,以此来判断网站是否在正常运行。网站的关键数据包含很多方面,具体为:
(1)、要对网站的独立用户的访问量进行总结分析,换句话说就是对电脑进行网站的访问数量进行统计,需要注意的是电脑访问数量与IP地址访问不是同一个概念。
(2)、统计积极访问者、忠实访问者的比率及客户的转化率。
(3)、对客户单价、满意度。回访率及投资回报率都要进行一定的数据统计,以此来分析整个网站的实际运营状况。
2、对收集的数据进行分
网站数据的收集,是进行数据分析前的重要一步,因为它直接决定了分析结果的合理性。因此做好完整、合理、真实的数据收集工作是十分必要的。在这个过程中要注意对网站后台数据、搜索引擎数据、统计工具的数据等进行分析,因为这些数据看似杂乱,实际上是反应网站是否正常运行及运转状态的重要标志。
综上所述,在对电子商务进行数据分析的过程中,不仅要注意以上两点,还要针对这些数据进行量化分析,在完成所有步骤之后再开始制定方案。只有这样,才能客观的反应出公司的实际运转状态,才能达到预想的目的。
以上是小编为大家分享的关于浅谈电子商务的数据分析的相关内容,更多信息可以关注环球青藤分享更多干货
⑵ 电商运营如何做数据分析
一. 电商数据分来析架构
首先需要承认的源是,数据分析架构模型的前置是需要对业务的日常工作场景及需求有充足的理解,并能提出具有建议的数据分析方法,以释放业务人员在数据分析环节的时效。
二. 线上店铺管理分析
对于一家店铺的用户而言,一个完整的购买流程:看到广告-进入店铺-浏览商品-咨询购买-下单支付。对于店铺运营人员应该如何对各个环节的用户进行流量分析和管理呢?针对此,下面将分别从流量分析、销售分析、商品分析、活动分析四方面进行详细解析。
三. 线下门店管理分析
对于电商企业而言,过去是以线上店铺为主,随着业务的扩张,现在这些企业通过不断拓展线下门店,弥补线上用户体验的缺失,融合线上线下,从而扩大用户规模。为此,永洪咨询专家设计出线下门店管理分析体系,通过线下门店拓展分析、店铺选址分析,帮助电商企业选择最合适的店铺以及对店铺实现高效管理。
⑶ 电商运营如何做数据分析
什么是数据:所谓数据(data),是描述客观事物的各种符号,数据包括数字、声音、颜色、文字、图像等。
对于电商来说,数据很多时候就是数字,比如:流量、转化率、访问深度、宝贝好评数、客服销售占比等等。
获取这些数据也很容易,基本上我用到的软件也就这几个:生意参谋、生e经、赤兔。
对电商来说,数据统计包括:月度销售统计表、客服销售统计表、单品流量分布表等等。
我们可以根据自身的需要,在后台采集各种数据,做出各种样式的统计表。对我来说,数据统计,有EXCEL就够了,电商没有那么深奥,EXCEL几乎能帮我们搞定所有数据统计的工作。
⑷ 电商数据分析应该从哪些方面进行分析
我一直在问答谈运营技术。但是我认为,我最强在于数据跟视觉。
我认为,竞争到最后,运营跟运营之间的差距是从数据跟视觉开始区分的。
今天我们恰巧有时间来谈谈数据。
什么是数据分析思维?
数据分析思维,我认为是:把行为转化为数据-通过数据反推行为。
我举个例子:
你经常来我店铺购买姨妈巾。
你今天过来买姨妈巾,我就知道你大概一周内要来大姨妈。根据你购买的数量跟规格,我就能推断你一次大姨妈来多久,量大概多少。拉出来你半年的购买时间,我就可以推断你多久一次大姨妈是不是稳定。
如果有两个月没看到你购买姨妈巾了。。。那肯定是在两个月前,你男朋友的雨衣破了。
拉出来你男朋友的购买记录,我就知道,这个店铺的雨衣可能不合格。
为了验证他是不是不合格,我们去看看他半年内的复购率是不是远低于同行。
嗯,就因为你没有买姨妈巾,我怀疑这个店铺的雨衣不合格。
这就是数据分析的基本思维。
学会数据分析的基本思维,只能说,你勉强具备数据分析的可能。
那么做数据分析。需要明白几个东西。
1、数据样本:数据样本如果选择不合理,那么结果完全就是错误的。譬如我去抓取一个定位40岁大妈的姨妈巾店铺,要中国女性的姨妈周期,那根本就不科学好吗。这是青春期跟更年期的差异(此例子说明林慕白同学同样对妇科知识有所涉猎,欢迎广大适龄未婚女性知友来信咨询)。
实战中经常犯的例子是:平销转化率很好的单品,在聚划算卖不好。平销转化率不好的某些单品,聚划算反而会卖爆?为什么呢?想想,别问我,自己想。闹不明白就别尝试做电商的数据分析了。
2、数据选择:实际上我们会遇到很多的数据,但是有些数据不一定是我们想要的。就像我们这辈子会遇到很多很好的女生,但是我们很难明白,谁才能更好陪伴我们走完这一生。这个事情无法举例,我这边给一份试题:
现在我们店铺需要做优惠券促销,目的要提高客单价。
好,你告诉我要做满100减10元。
嗯,很好,那你现在告诉我,为什么是满100而不是满110,为什么是减10元而不是减20。拿出来你的数据。
嗯,不要问我怎么弄。也不要怀疑我是不是真的能分析出来,我真的能。
3、动态变化:我们一般最常用的,就是通过数据之间的变化,来分析可能出现一些什么问题或者变化。然而当一个数据量变化的时候,往往其他的数据也会发生变化。所以我们需要清晰什么数据之间是正相关,什么是反相关,他们之间的关系,在什么情况下是成立的。譬如正常收藏的比例跟转化率是正相关的,但是这几天他们是反相关的。转化率越掉,收藏率可能就越高。
我就谈谈数据分析的框架,我估计这些东西别人懒得讲,所以我讲一下。
至于什么工具看什么数据让别人讲吧。
码字有些累。谢谢
⑸ 电商数据分析需要统计哪些指标
数据指标
1.电商总体运营指标
数据指标
电商总体运营整体指标主要面向的人群电商运营的高层,通过总体运营指标评估电商运营的整体效果。电商总体运营整体指标包括四方面的指标:
(1)流量类指标
独立访客数(UV),指访问电商网站的不重复用户数。对于PC网站,统计系统会在每个访问网站的用户浏览器上“种”一个cookie来标记这个用户,这样每当被标记cookie的用户访问网站时,统计系统都会识别到此用户。在一定统计周期内如(一天)统计系统会利用消重技术,对同一cookie在一天内多次访问网站的用户仅记录为一个用户。而在移动终端区分独立用户的方式则是按独立设备计算独立用户。
页面访问数(PV),即页面浏览量,用户每一次对电商网站或着移动电商应用中的每个网页访问均被记录一次,用户对同一页面的多次访问,访问量累计。
人均页面访问数,即页面访问数(PV)/独立访客数,该指标反映的是网站访问粘性。
(2)订单产生效率指标
总订单数量,即访客完成网上下单的订单数之和。
访问到下单的转化率,即电商网站下单的次数与访问该网站的次数之比。
(3)总体销售业绩指标
网站成交额(GMV),电商成交金额,即只要网民下单,生成订单号,便可以计算在GMV里面。
销售金额。销售金额是货品出售的金额总额。
注:无论这个订单最终是否成交,有些订单下单未付款或取消,都算GMV,销售金额一般只指实际成交金额,所以,GMV的数字一般比销售金额大。
客单价,即订单金额与订单数量的比值。
(4)整体指标
销售毛利,是销售收入与成本的差值。销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用)。
毛利率,是衡量电商企业盈利能力的指标,是销售毛利与销售收入的比值。如京东的2014年毛利率连续四个季度稳步上升,从第一季度的10.0%上升至第四季度的12.7%,体现出京东盈利能力的提升。
2.网站流量指标
数据指标
(1)流量规模类指标
常用的流量规模类指标包括独立访客数和页面访问数,相应的指标定义在前文(电商总体运营指标)已经描述,在此不在赘述。
(2)流量成本累指标
单位访客获取成本。该指标指在流量推广中,广告活动产生的投放费用与广告活动带来的独立访客数的比值。单位访客成本最好与平均每个访客带来的收入以及这些访客带来的转化率进行关联分析。若单位访客成本上升,但访客转化率和单位访客收入不变或下降,则很可能流量推广出现问题,尤其要关注渠道推广的作弊问题。
(3)流量质量类指标
跳出率(Bounce Rate)也被称为蹦失率,为浏览单页即退出的次数/该页访问次数,跳出率只能衡量该页做为着陆页面(LandingPage)的访问。如果花钱做推广,着落页的跳出率高,很可能是因为推广渠道选择出现失误,推广渠道目标人群和和被推广网站到目标人群不够匹配,导致大部分访客来了访问一次就离开。
页面访问时长。页访问时长是指单个页面被访问的时间。并不是页面访问时长越长越好,要视情况而定。对于电商网站,页面访问时间要结合转化率来看,如果页面访问时间长,但转化率低,则页面体验出现问题的可能性很大。
人均页面浏览量。人均页面浏览量是指在统计周期内,平均每个访客所浏览的页面量。人均页面浏览量反应的是网站的粘性。
(4)会员类指标
注册会员数。指一定统计周期内的注册会员数量。
活跃会员数。活跃会员数,指在一定时期内有消费或登录行为的会员总数。
活跃会员率。即活跃会员占注册会员总数的比重。
会员复购率。指在统计周期内产生二次及二次以上购买的会员占购买会员的总数。
会员平均购买次数。指在统计周期内每个会员平均购买的次数,即订单总数/购买用户总数。会员复购率高的电商网站平均购买次数也高。
会员回购率。指上一期末活跃会员在下一期时间内有购买行为的会员比率。
会员留存率。会员在某段时间内开始访问你的网站,经过一段时间后,仍然会继续访问你的网站就被认作是留存,这部分会员占当时新增会员的比例就是新会员留存率,这种留存的计算方法是按照活跃来计算,另外一种计算留存的方法是按消费来计算,即某段的新增消费用户在往后一段时间时间周期(时间周期可以是日、周、月、季度和半年度)还继续消费的会员比率。留存率一般看新会员留存率,当然也可以看活跃会员留存。留存率反应的是电商留住会员的能力。
⑹ 如何做电商数据分析
主要用到的是数据透视表;主要是提供一些报表供领导参考。应该用到了5W2H分析法,SWTO矩阵分析法。
数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存清仓表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。电商数据分析也需要采用的是数学模型分析预测的。
---------------------来自小A服务
⑺ 电商销售额下降,应该从哪些数据维度分析
摘自:YiShop电商系统
要构建电商数据分析的基本指标体系,主要分为8个类指标
1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。
3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4. 客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。
6. 市场营销活动指标,主要监控某次活动给电商网站带来的效果,以及监控广告的投放指标。
7. 风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题
8. 市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整
以上总共从8个方面来阐述如何对电商平台进行数据分析,当然,具体问题具体分析,每个公司的侧重点也有所差异,所以如何分析还需因地制宜。
⑻ 电商运营数据分析指标有哪些
1)总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。2)网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析等等。
3)销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4)客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5)商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售。
6)市场营销活动指标,主要监控某次活动给电商网站带来的效果,以及监控广告的投放指标。
7)风控类指标:分析卖家评论,以及投诉情况,发现问题,改正问题。
8)市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整。