⑴ 一个企业,特别是电商类的,如何进行大数据分析
大数据不仅仅意味着数据大,最重要的是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。下面介绍大数据分析的五个基本方面——
预测性分析能力:数据挖掘可以让分析员更好地理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
数据质量和数据管理:通过标准化的流程和工具对数据进行处理,可以保证一个预先定义好的高质量的分析结果。
可视化分析:不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求,可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
语义引擎:由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析、提取、分析数据,语义引擎需要被设计成能够从“文档”中智能提取信息。
数据挖掘算法:可视化是给人看的,数据挖掘就是给机器看的,集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值,这些算法不仅要处理大数据的量,也要处理大数据的速度。
据我所知多瑞科舆情数据分析站大数据分析还可以。针对单个网站上的海量数据,无遗漏搜集整理归档,并且支持各种图文分析报告;针对微博或网站或微信,活动用户投票和活动用户评论互动信息整理归档,统计分析精准预测制造新数据;针对某个论坛版块数据精准采集,数据归类,出分析报告,准确定位最新市场动态;针对某个网站监测用户的操作爱好,评定最受欢迎功能;针对部分网站,做实时数据抽取,预警支持关注信息的最新扩散情况;针对全网数据支持定向采集,设置关键词搜集数据,也可以划分区域或指定网站搜集数据针对电商网站实时监测评论,归类成文档,支持出报告。
大数据会影响整个社会的发展,主要看是想要利用数据做什么了
⑵ 电子商务数据分析的电子商务数据分析的七个重要因素
1、电子商务数据分析需要商业敏感
今天电子商务公司的数据分析师,有些像老板的军师,必须有从枯燥的数据中解开市场密码的本事。比如,具有商业意识的数据分析师发现,网站上的婴儿车的销售增加了,那么,他基本可以预测奶粉的销量也会跟上去。再比如,网站上的产品发挥的作用并不一样,有的产品是为了赚钱,有的产品是为了促销,有的产品是 为了吸引流量,不同的产品在网站上摆放的位置是不一样的。一个商业敏感的数据分析师,是懂得用什么样的数据实现公司的目标。比如,乐酷天与淘宝竞争,它们重点看的不是交易量,而是流量:每天有多少新的卖家进来,卖了多少东西。因为此阶段竞争最核心的就是人气,而非实质交易量。如果新来的卖家进来卖不出东西,只有老卖家的交易量在增长,即使最后每天的交易量都 增长,也还是有问题。再比如,一家刚踏入市场的B2B公司和已经占领大部分市场的B2B公司,它们的目标不一样。前者是看流量赚人气,后者对流量不怎么看重,而是看重交易转化率及回头率。当下的数据分析师多是学统计学出身的,一堆数据放在那里,大家都擅长怎么算回归、怎么画函数。但是这批学数学的人才缺乏商业意识,不知道这些数据对业务意味着什么,看不见一堆数据中彼此的关系,也就不知道该用什么样的逻辑分析,也就无法充当老板的眼睛了。
2、电商网站转化率是关键,ROI是最终的目标
电子商务B2B网站平台的宗旨就是为企业服务,让买家与卖家的市场销售成本降低,降低交易成本,提高订单利润。因此,电子商务的网站转化率是关键,这其中就提到一个指标的重要性——ROI。ROI是Return On Investment的简写,是指通过投资而应返回的价值,它涵盖了企业的获利目标。利润和投入的经营所必备的财产相关,因为管理人员必须通过投资和现有财产获得利润。又称会计收益率、投资利润率。其计算公式为:投资回报率(ROI)=年利润或年均利润/投资总额×100%投资回报率(ROI)的优点是计算简单;缺点是没有考虑资金时间价值因素,不能正确反映建设期长短及投资方式不同和回收额的有无等条件对项目的影响, 分子、分母计算口径的可比性较差,无法直接利用净现金流量信息。只有投资利润率指标大于或等于无风险投资利润率的投资项目才具有财务可行性。投资回报率(ROI)往往具有时效性–回报通常是基于某些特定年份。
3、电子商务数据分析衡量指标的设定
指标是让我们更好的从数据量化的层面来了解运营的状况,PV、UV、转化率基本是运营监督的指标;网站分析采用的指标可能有各种各样的,根据网站的目标和网站的客户的不同,可以有许多不同的指标来衡量。常用的网站分析指标有内容指标和商业指标,内容指标指的是衡量访问者的活动的指标,商业指标是 指衡量访问者活动转化为商业利润的指标。电子商务的数据可分为两类:前端行为数据和后端商业数据。前端行为数据指访问量、浏览量、点击流及站内搜索等反应用户行为的数据;而后端数据更侧重商业数据,比如交易量、投资回报率,以及全生命周期管理等。有些人关心前端行为数据,也有些人关心后端商业数据,但是没有几家网站把前端行为数据和后端商业数据连起来看。大家只单纯看某一端数据。但是看数据看得“走火入魔”的人会明白,每个数据,就像散布在黑夜里的星星,它们之间布满了关系网,只要轻轻按一下其中一个数据,就会驱动另外一个数据的变化。
4、某些指标异常变化的原因分析
网站的某些指标的异常变化是外界市场一些变化的客观反应,网站的数据分析人员一定要积极注意。例如PV减少(异常),那我们就要分析用户是搜索来源减少还是直接访问减少?反连接过来的减少?搜索减少就要观察用户的关键字、搜索引擎等。例如2011年的上半年,曾出现阿里巴巴与慧聪发生争论,而在那几天,另一个B2B网站–世界工厂网的会员注册量批量上升,每天超过千个以上的注册 量。当然这只是一部分的猜测,在两个B2B巨头不稳定之时,企业会选择第三方的平台,这是符合常理推断的。不过就此以后,世界工厂的注册量一直是稳中有升 的,难道这是会员发现一个免费“新大陆”的口碑宣传吗?事后发现,是因为世界工厂网的一个新项目–全球企业库的上线吸引了大量企业会员的青睐,注册量猛 然提升的。对于一些数据的异常增加或减少,一定要分析其产生的原因与市场时机,这对平台以后的发展及政策导向非常有借鉴意义。有一天,linkin(一个社区网站)忽然发现来自雷曼兄弟的来访者多了起来,但是并没有深究原因。第二天,雷曼兄弟就宣布倒 闭了。原因何在?雷曼兄弟的人到linkin找工作来了。谷歌宣布退出中国的前一个月,笔者在linkin上发现了一些平时很少见的谷歌产品经理在线,这 也是相同的道理。试想,如果linkin针对某家上市公司分析某些数据,是不是很有商业价值?
5、利用数据分析用户的行为习惯
再次说,得到数据来分析是在揣测用户的心理和一些习惯,最真实的是让用户告诉你,需要什么,这些可以利用投票调查及问题提交等来实现,当然利用数据整合分析也是必然的,然后做出来AT来权衡利弊来对用户体验惊醒改善,和一些基本的产品定位及活动。装备制造负责人认为,网站数据分析应该两个层次:第一,网站数据分析,是针对产品来说。就围绕产品如何运转,做封闭路径的分析。得出产品的点击是否顺畅、功能展现是否完美 。第二、研究客户的访问焦点,挖掘客户潜在需求。如果是以交易为导向的电子商务网站,就是要研究如何高效的促成交易,是否能出现联单!
6、客户的购买行为分析
当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户,电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买 数量、支付金额等信息保存在自己的数据库里面,所以对于这些用户,我们可以基于网站的运营数据对他们的交易行文进行分析,以估计每位用户的价值,及针对每位用户的扩展营销的可能性。客户的购买行为分析,如传统的RFM模型,会员聚类,会员的生命周期分析,活跃度分析,这些都精准的运营都是非常重要的。
7、电子商务数据分析需注重实战经验
以上所谈到的电子商务数据分析的几个重要因素,笔者个人感觉倒是有点套路,电子商务的数据分析更多的是实战,网站分析的本质是在了解用户的需求、行为,以开发用户体验良好的功能与服务,制定扩展营销的策略及附加功能的推广服务等等。
⑶ 电商运营如何做数据分析
一. 电商数据分来析架构
首先需要承认的源是,数据分析架构模型的前置是需要对业务的日常工作场景及需求有充足的理解,并能提出具有建议的数据分析方法,以释放业务人员在数据分析环节的时效。
二. 线上店铺管理分析
对于一家店铺的用户而言,一个完整的购买流程:看到广告-进入店铺-浏览商品-咨询购买-下单支付。对于店铺运营人员应该如何对各个环节的用户进行流量分析和管理呢?针对此,下面将分别从流量分析、销售分析、商品分析、活动分析四方面进行详细解析。
三. 线下门店管理分析
对于电商企业而言,过去是以线上店铺为主,随着业务的扩张,现在这些企业通过不断拓展线下门店,弥补线上用户体验的缺失,融合线上线下,从而扩大用户规模。为此,永洪咨询专家设计出线下门店管理分析体系,通过线下门店拓展分析、店铺选址分析,帮助电商企业选择最合适的店铺以及对店铺实现高效管理。
⑷ 电商平台应该分析哪些数据具体怎么去分析
电子商务平台需要分析的数据及分析规则如下:
一、网站运营指标:
网站运营指标主要用于衡量网站的整体运营情况。在这里,EC数据分析联盟暂时将网站运营指标分为网站流量指标、商品类别指标和供应链指标。网站流量指标主要用于考虑网站优化、网站可用性、网站流量质量和客户购买行为。
商品类别指标主要用于衡量网站商品的正常运营水平,与销售指标和供应链指标密切相关。这里的供应链指标主要是指电子商务网站的商品库存和商品配送,而不考虑商品的生产和原材料的库存和运输。
二、商业环境指标:
这里,电子商务网站经营环境指标分为外部竞争环境指标和内部购物环境指标。外部竞争环境指标主要包括市场占有率、市场拓展率、网站排名等,这些指标通常使用第三方研究公司的报告数据。与独立的B2C网站相比,淘宝在这方面的数据要准确得多。
网站内部购物环境指标包括功能指标和运营指标(这部分与之前的流量指标一致)。常见的功能指标包括商品种类的多样性、支付配送方式、网站正常运行、连接速度等。
三、销售业绩指标:
销售业绩指标与公司的财务收入直接挂钩,在所有数据分析指标体系中起着主导作用。其他数据指标可根据该指标进行细分。
网站销售绩效指标主要关注网站订单的转化率,而订单销售指标主要关注具体毛利率、订单效率、重复采购率、退货率和汇率。当然,还有很多指标,如总销售额、品牌类别销售额、总订单、有效订单等,这里没有列出。
四、营销活动指标:
营销活动的成功通常从活动效果(收入和影响)、活动成本和活动凝聚力(通常通过用户注意力、活动用户数量和客户单价来衡量)等方面来考虑。在这里,营销活动指标分为日常市场运营活动指标、广告宣传指标和对外合作指标。
其中,市场经营活动指标和广告投放指标主要考虑新增客源数量、订单数量、订单转化率、每次访问成本、每次转化收益和投资回报。而对外合作的指标则由具体的合作伙伴来确定。例如,电子商务网站与返利网合作时,首先考虑的是合作的回报。
5、客户价值指数:
顾客价值通常由三部分组成:历史价值(过去消费)、潜在价值(主要从用户行为考虑,以RFM模型为主要衡量依据)、附加价值(主要从用户忠诚度、口碑推广等方面考虑)。这里,客户价值指标分为总体客户指标和新老客户价值指标。
这些指标主要从客户贡献和购置成本两个方面来衡量。例如,我们使用访客数量、访客成本和从访客到订单的转换率来衡量总体客户价值指数。除了上述考虑之外,老客户价值的衡量更多的是基于RFM模型。
(4)电子商务数据统计分析扩展阅读:
电子商务中使用分析数据的优点:
数据分析体系建立之后,其数据指标并不是一成不变的,需要根据业务需求的变化实时的调整,调整时需要注意的是统计周期变动以及关键指标的变动。
一般来说,单个数据索引的分析并不能解决这个问题,而且每个索引都是相互关联的。将所有索引编织成一个网络,并根据具体需要找到每个数据索引节点。当用户在电子商务网站上有购买行为时,他们会从潜在客户转变为网站的价值客户。
电子商务网站一般将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息存储在自己的数据库中,因此,这些客户可以根据网站的运营数据来分析自己的交易行为,估计每个客户的价值以及为每个客户拓展营销的可能性。
参考资源来源:
网络-电子商务数据分析
⑸ 电商数据分析需要统计哪些指标
电商数据分析主要围绕订单增减、用户消费行为、流量变化等维度在仪表盘展示不同的版图表分析;
我一般权做电商数据分析,会先将数据导入一个数据分析工具(数据观、魔镜、bdp个人版这些都可以)然后根据需要做一个模板,即可完成数据分析,而且像bdp个人版的话,还支持同步宝,只需要导入数据做一次模板就可以了,下次更新数据,图表随之更新,即可不用重复做数据分析,还不错。
希望楼主可以采纳。
⑹ 电子商务数据分析对于企业具有什么意义
这个意义就大了哦
至少能分析哪些产品好卖。
哪些产品没有推广出去。
或者没有展现及点击量。
⑺ 从哪里能看到电商的行业数据分析报告
我国网络零售交易规模连续多年稳居世界第一
2019中国国际电子商务博览会正在浙江义乌举行。作为主办方的中国国际电子商务中心相关负责人介绍说,我国电子商务发展规模和模式丰富程度,都已经遥遥领先其他国家,在网络零售交易额方面,已经连续多年稳居世界第一。
2018年中国电子商务交易总额超30万亿,10年增长10倍
据前瞻产业研究院发布的《中国电子商务行业市场前瞻与投资战略规划分析报告》统计数据显示,2008年中国电子商务交易总额仅仅达3.4万亿元。2010年中国电子商务交易总额超4万亿元。到了2013中国电子商务交易总额突破10万亿元。截止至2017年全国电子商务交易额达29.16万亿元,同比增长11.7%。其中商品、服务类电商交易额21.83万亿元,同比增长24.0%;合约类电商交易额7.33万亿元,同比下降28.7%。预计2018年中国电子商务交易额将达37.05万亿元。进入2018年底,中国电子商务交易总额超30万亿元,达到了31.63万亿元,2008-2018年这十年期间增长了10倍。
2008-2018年中国电子商务交易额统计情况
数据来源:前瞻产业研究院整理
中国国际电子商务中心副主任姚广海表示,不仅仅是规模在世界遥遥领先,同时我们在电商模式的丰富程度,在电商覆盖的领域,都是领先于世界(其他国家)的,同时直接影响电商发展的网上支付和物流快递这两个环节,我们在世界上更是遥遥领先。
专家表示,在拉动消费方面,电子商务的作用巨大。回顾过去几年中国电子商务的发展成就,无疑跟信息技术的进步是分不开的。4G技术的发展,给移动互联网带来了便捷性,也带动了手机端消费模式的兴起。即将到来的5G技术可能会带来更大的应用市场。
中国电子商会秘书长彭李辉表示,比如说万物互联,我们的车联网,所有的出行、无人驾驶,都可以做到零延时的信息传递。未来在5G环境下面的一些直播短视频,因为短视频崛起之后,(对)带动销量有很大的帮助,通过视频的角度,能够初步了解商品的功能,精准找到需求。
跨境电商为双边贸易发挥作用
近年来,随着“一带一路”建设的不断深入,中国与沿线国家在电子商务领域展开了广泛的交流与合作,跨境电商不断深耕。俄罗斯驻华商务代表处高级专员亚历山德拉·加拉甘现场分享的数据显示,2018年俄中两国贸易额首次突破1000亿美元,双边贸易额达到1070亿美元,同比增长27%。其中,2018年两国跨境电商贸易额已超过40亿美元,同比增长23%,两国客户收到超过3亿个包裹。
她说,俄罗斯的主要外国电商平台是中国,从包裹数量来看90%的海外包裹来自中国,从金额上看中国占俄罗斯海外网购的50%。2018年6月两国共同签署“关于电子商务合作的谅解备忘录”,电子商务在双边经贸关系中发挥着越来越重要的作用,同时也是吸引中小企业参与双边经贸合作的重要手段。
中非电子商务有限公司董事长侯志刚认为,数字经济的发展已成为一种必然趋势,电子商务有助于企业积极应对数字贸易壁垒,成为企业抓住数字贸易发展新机遇的重要载体。
社交电商成新的市场风口
针对近两年社交电商以其裂变式的成长速度不断刷新市场认知,成为新的万亿市场风口。国美零售控股集团副总裁李欣表示,随着中国城镇化率的不断提升,“拼多多”的崛起就很好证明了中国还有很广阔的未被开发出来的电商发展空间。社交电商是大的蓝海,是有温度的,下一步国美很重要的切入点就是社交电商。
据悉,国美于2018年4月开始上线和试运营旗下社交电商平台国美美店,截至2018年底,GMV(网站成交金额,包含付款和未付款两部分)43亿,服务用户超过190万人。
⑻ 如何做电商数据分析
目前我也从事数据分析,主要用到的是数据透视表;主要是提供一些报表供回领导参考。其实我感觉应该用答到了5W2H分析法,领导还跟我说过SWTO矩阵分析法,让我下去仔细研究。
据说数据分析要有以下的一些步骤:明确分析思路,数据收集,收集存储,数据整理,数据分析,数据呈现,报告撰写等。
电商的数据分析,我个人以为,应该至少有销量分析,包括销量,销售额,客户人数,地区分布,top30等,我们公司还有页码分析;仓库分析,包括库存清仓表,库存预警表,销售渠道分析;购买意向性分析,季节性,促销活动等对销售的影响等。具体问题具体分析,我知道的另一家电商分析却采用的是数学模型分析预测的。
⑼ 电子商务运营数据一般分析哪些
一、抄浏览、创建订单,支袭付订单转化;
二、商品浏览,加入购物车,提交购物车,创建订单,支付等五步转化趋势;
三、商品两个时间区间的销量、金额、客单价对比分析;
四、网站首页、频道页对商品浏览、创建订单,支付订单转化;
五、网站首页、频道页对商品浏览,加入购物车,提交购物车,创建订单,支付等五步转化趋势;
六、网站页面广告位对商品浏览、创建订单,支付订单转化;
七、自定义商品组功能,重点对商品活动、商品类目进行统计分析。
⑽ 电子商务该如何做数据分析如何数据分析入门
一、为什么要数据分析,数据分析可以帮到你什么。
先搞懂什么是数据分析,其定义是把隐没在一大批看来杂乱无章的数据中的信息,集中、萃取和提炼出来,以找出所研究对象的内在规律,并提供决策支持的一系列分析过程。数据→信息→营销决策→销量。既然是决策支持,那么数据分析帮助我们发现问题、分析问题,并指导我们做出最佳营销决策决策。商场如战场,数据分析就是店铺商战中的雷达。
数据分析的作用:
分享线上活动成效、考核相关人员绩效(KPI)、监控推广的投入产出(ROI)、发现客服、营销等方面的问题、预测市场未来趋势、帮助改进网站UED。
二、 数据分析:关于监控。
很多人会说,不必录入监控啊,量子上面不都有记录吗?但是殊不知,录入和监控的过程其实就是分析的过程,往往做数据录入的人员是最清楚公司的整体的状况的人员。关于监控数据的来源工具,常用的也就那么几个:
数据魔方、量子统计、推广后台、其他
来源不多,但是用到精通、熟练,充分从数据中提取有用信息,需要花心思。用量子统计获取店铺自身的优劣势、用数据魔方纵观行业概况,从推广后台测评ROI,并从自身角度添加其他数据分析工具,最终有效结合起来,才算是知己知彼,胸中有丘壑。
关于数据获取之后最关键的又算是数据模型的建立,这里我提供三个数据模型供大家参考。
1、销量模型(店铺经营概况)
2、产品模型(以产品为导向)
3、推广模型(以推广为导向)
三、数据分析:关于对比。
数据分析需要对比,可以是自己跟他人或行业比,也可以是自己不同时段的比较。譬如:我通过与行业的本月数据对比,发现其余环节都略高于行业均值,只有客单价部分是短板,那么提供的决策支持应该是增加同类宝贝推荐以及搭配套餐等工作,以及多做一些店铺活动提高客单价。 又譬如:通过本周与上周的对比,发现销售额下降严重,进一步分析发现行业销售额不减反增,原来由于秋冬换季,我店铺产品没有及时更替产品严重滞后导致。
四、数据分析:关于分解。
分解也是数据分析不可或缺的一大环节,尤其是未来市场预测和流量比例分配。举一个简单的例子:现在我要加大推广力度,在成本控制内提高20%的销售额。
先用公式“销售额= 流量 X 转化率 X 客单价 ”把销售额分解开来,采用控制变量法,保持转化率、客单价不变情况下。