導航:首頁 > 培訓大全 > 資料庫ETL培訓課程內容

資料庫ETL培訓課程內容

發布時間:2022-06-21 01:18:19

A. ETL工程師是做什麼的

ETL工程師又叫資料庫工程師。

ETL工程師的主要工作內容有:從事系統編程、資料庫編程與設計。ETL是數據倉庫中的非常重要的一環。它是承前啟後的必要的一步。相對於關系資料庫,數據倉庫技術沒有嚴格的數學理論基礎,它更面向實際工程應用。

所以從工程應用的角度來考慮,按著物理數據模型的要求載入數據並對數據進行一些系列處理,處理過程與經驗直接相關,同時這部分的工作直接關系數據倉庫中數據的質量,從而影響到聯機分析處理和數據挖掘的結果的質量。

職業前景

從業務角度講,隨著數據應用的日益豐富,不同平台、系統的相互大批量數據交互成常態,僅僅滿足於採集數據已經不適應業務需要,還需要能夠為數據的目的端落地提供支撐,ETL工程師需要一個端到端的更適應業務需要的數據交換系統。

從技術角度講,ETL做一定的擴展可以升級為兼具交換能力,兩者有傳承,可以實現平滑過渡,但交換卻要考慮用另一個工具實現,同時未來大數據平台組件將異常豐富,相互之間的數據交換將是常態,必要要有更高級別的交換工具滿足這些需求。

B. 什麼是數據ETL

ETL,是英文Extract-Transform-Load的縮寫,用來描述將數據從來源端經過萃取(extract)、轉置(transform)、載入(load)至目的端的過程。

ETL一詞較常用在數據倉庫,但其對象並不限於數據倉庫。

(2)資料庫ETL培訓課程內容擴展閱讀

ETL(orELT)的流程可以用任何的編程語言去開發完成,由於ETL是極為復雜的過程,而手寫程序不易管理,有愈來愈多的企業採用工具協助ETL的開發,並運用其內置的metadata功能來存儲來源與目的的對應(mapping)以及轉換規則。

工具可以提供較強大的連接功能(connectivity)來連接來源端及目的端,開發人員不用去熟悉各種相異的平台及數據的結構,亦能進行開發。

當然,為了這些好處,付出的代價便是金錢。

參考資料來源:網路-ETL

C. 大數據開發工程師要學習哪些課程

1.大數據工程師工作中會做什麼?

集群運維:安裝、測試、運維各種大數據組件
數據開發:細分一點的話會有ETL工程師、數據倉庫工程師等
數據系統開發:偏重Web系統開發,比如報表系統、推薦系統等
這裡面有很多內容其實是十分重合的,下面大致聊一下每一塊內容大致需要學什麼,以及側重點。
2.集群運維
數據工程師,基本上是離不開集群搭建,比如hadoop、Spark、Kafka,不要指望有專門的運維幫你搞定,新組件的引入一般都要自己來動手的。
因此這就要求數據工程師了解各種大數據的組件。
由於要自己的安裝各種開源的組件,就要求數據工程師要具備的能力: Linux 。要對Linux比較熟悉,能各種自己折騰著玩。
由於現在的大數據生態系統基本上是 JVM系的,因此在語言上,就不要猶豫了,JVM系的Java和Scala基本上跑不掉,Java基本上要學的很深,Scala就看情況了。
3. ETL
ETL在大數據領域主要體現在各種數據流的處理。這一塊一方面體現在對一些組件的了解上,比如Sqoop、Flume、Kafka、Spark、MapRece;另一方面就是編程語言的需要,Java、Shell和Sql是基本功。
4.系統開發
我們大部分的價值最後都會由系統來體現,比如報表系統和推薦系統。因此就要求有一定的系統開發能力,最常用的就是 Java Web這一套了,當然Python也是挺方便的。
需要注意的是,一般數據開發跑不掉的就是各種提數據的需求,很多是臨時和定製的需求,這種情況下, Sql就跑不掉了,老老實實學一下Sql很必要。
如何入門?
前面提到了一些數據工程師會用到的技能樹,下面給一個入門的建議,完全個人意見。
1.了解行業情況
剛開始一定要了解清楚自己和行業的情況,很多人根本就分不清招聘信息中的大數據和數據挖掘的區別就說自己要轉行,其實是很不負責的。不要總是趕熱點,反正我就是經常被鄙視做什麼大數據開發太Low,做數據就要做數據挖掘,不然永遠都是水貨。
2.選擇學習途徑
如果真是清楚自己明確地想轉數據開發了,要考慮一下自己的時間和精力,能拿出來多少時間,而且在學習的時候最好有人能多指點下,不然太容易走彎路了。
在選擇具體的學習途徑時,要慎重一點,有幾個選擇:
自學
報班
找人指點
別的不說了,報班是可以考慮的,不要全指望報個輔導班就能帶你上天,但是可以靠他幫你梳理思路。如果有專業從事這一行的人多幫幫的話,是最好的。不一定是技術好,主要是可溝通性強。
3.學習路線
學習路線,下面是一個大致的建議:
第一階段
先具備一定的Linux和Java的基礎,不一定要特別深,先能玩起來,Linux的話能自己執行各種操作,Java能寫點小程序。這些事為搭建Hadoop環境做准備。
學習Hadoop,學會搭建單機版的Hadoop,然後是分布式的Hadoop,寫一些MR的程序。
接著學學Hadoop生態系統的其它大數據組件,比如Spark、Hive、Hbase,嘗試去搭建然後跑一些官網的Demo。
Linux、Java、各種組件都有一些基礎後,要有一些項目方面的實踐,這時候找一些成功案例,比如搜搜各種視頻教程中如何搞一個推薦系統,把自己學到的用起來。
第二階段
到這里是一個基本的階段了,大致對數據開發有一些了解了。接著要有一些有意思內容可以選學。
數據倉庫體系:如何搞數據分層,數據倉庫體系該如何建設,可以有一些大致的了解。
用戶畫像和特徵工程:這一部分越早了解越好。
一些系統的實現思路:比如調度系統、元數據系統、推薦系統這些系統如何實現。
第三階段
下面要有一些細分的領域需要深入進行,看工作和興趣來選擇一些來深入進行
分布式理論:比如Gossip、DHT、Paxo這些構成了各種分布式系統的底層協議和演算法,還是要學一下的。
數據挖掘演算法:演算法是要學的,但是不一定純理論,在分布式環境中實現演算法,本身就是一個大的挑戰。
各種系統的源碼學習:比如Hadoop、Spark、Kafka的源碼,想深入搞大數據,源碼跑不掉。

D. ETL基本常識是什麼

對於做過 BI 開發的朋友,ETL 並不陌生,只要涉及到數據源的數據抽取、數據的計算和處理過程的開發,都是 ETL,ETL 就這三個階段,Extraction 抽取,Transformation 轉換,Loading 載入。
從不同數據源抽取數據 EXTRACTION ,按照一定的數據處理規則對數據進行加工和格式轉換 TRASFORMATION,最後處理完成的輸出到目標數據表中也有可能是文件等等,這個就是 LOADING。
再通俗一點講,ETL 的過程就跟大家日常做菜一樣,需要到菜市場的各個攤位買好菜,把菜買回來要摘一下,洗一洗,切一切最後下鍋把菜炒好端到飯桌上。菜市場的各個攤位就是數據源,做好的菜就是最終的輸出結果,中間的所有過程像摘菜、洗菜、切菜、做菜就是轉換。
在開發的時候,大部分時候會通過 ETL 工具去實現,比如常用的像 KETTLE、PENTAHO、IBM DATASTAGE、INFORNAICA、微軟 SQL SERVER 裡面的 SSIS 等等,在結合基本的 SQL 來實現整個 ETL 過程。


也有的是自己通過程序開發,然後控制一些數據處理腳本跑批,基本上就是程序加 SQL 實現。
哪種方式更好,也是需要看使用場景和開發人員對那種方式使用的更加得心應手。我看大部分軟體程序開發人員出身的,碰到數據類項目會比較喜歡用程序控制跑批,這是程序思維的自然延續。純 BI 開發人員大部分自然就選擇成熟的 ETL 工具來開發,當然也有一上來就寫程序腳本的,這類 BI 開發人員的師傅基本上是程序人員轉過來的。
用程序的好處就是適配性強,可擴展性強,可以集成或拆解到到任何的程序處理過程中,有的時候使用程序開發效率更高。難就難在對維護人員有一定的技術要求,經驗轉移和可復制性不夠。
用 ETL 工具的好處,第一是整個 ETL 的開發過程可視化了,特別是在數據處理流程的分層設計中可以很清晰的管理。第二是鏈接到不同數據源的時候,各種數據源、資料庫的鏈接協議已經內置了,直接配置就可以,不需要再去寫程序去實現。第三是各種轉換控制項基本上拖拉拽就可以使用,起到簡化的代替一部分 SQL 的開發,不需要寫代碼去實現。第四是可以非常靈活的設計各種 ETL 調度規則,高度配置化,這個也不需要寫代碼實現。
所以在大多數通用的項目中,在項目上使用 ETL 標准組件開發會比較多一些。
ETL 從邏輯上一般可以分為兩層,控制流和數據流,這也是很多 ETL 工具設計的理念,不同的 ETL 工具可能叫法不同。
控制流就是控制每一個數據流與數據流處理的先後流程,一個控制流可以包含多個數據流。比如在數據倉庫開發過程中,第一層的處理是ODS層或者Staging 層的開發,第二層是 DIMENSION維度層的開發,後面幾層就是DW 事實層、DM數據集市層的開發。通過ETL的調度管理就可以讓這幾層串聯起來形成一個完整的數據處理流程。
數據流就是具體的從源數據到目標數據表的數據轉換過程,所以也有 ETL 工具把數據流叫做轉換。在數據流的開發設計過程中主要就是三個環節,目標數據表的鏈接,這兩個直接通過 ETL 控制項配置就可以了。中間轉換的環節,這個時候就可能有很多的選擇了,調 SQL 語句、存儲過程,或者還是使用 ETL 控制項來實現。
有的項目上習慣使用 ETL 控制項來實現數據流中的轉換,也有的項目要求不使用標準的轉換組件使用存儲過程來調用。也有的是因為數據倉庫本身這個資料庫不支持存儲過程就只能通過標準的SQL來實現。
我們通常講的BI數據架構師其實指的就是ETL的架構設計,這是整個BI項目中非常核心的一層技術實現,數據處理、數據清洗和建模都是在ETL中去實現。一個好的ETL架構設計可以同時支撐上百個包就是控制流,每一個控制流下可能又有上百個數據流的處理過程。之前寫過一篇技術文章,大家可以搜索下關鍵字 BIWORK ETL 應該在網上還能找到到這篇文章。這種框架設計不僅僅是ETL框架架構上的設計,還有很深的ETL項目管理和規范性控制器思想,包括後期的運維,基於BI的BI分析,ETL的性能調優都會在這些框架中得到體現。因為大的BI項目可能同時需要幾十人來開發ETL,框架的頂層設計就很重要。

E. 大數據培訓課程介紹,大數據學習課程要學習哪些

目前大數據培訓機構提供的課程大約有兩種:一是大數據開發,二是數據分析與挖掘大數據培訓一般指大數據開發,不需要數學和統計學基礎,學習的內容大概有:

0基礎:

第一階段: Java開發·

第二階段: 大數據基礎·

第三階段: Hadoop生態體系·

第四階段: Spark生態系統·

第五階段: 項目實戰

提高班:

第一階段:大數據基礎·

第二階段:Hadoop生態體系·

第三階段:Spark生態系統·

第四階段:項目實戰

F. etl工程師是做什麼的,工作內容是什麼

etl工程師是從事系統編程、資料庫編程與設計,要掌握各種常用的編程語言的專業技術人員。也叫資料庫工程師。
工作內容:
見崗位職責:
1. 海量數據的ETL開發,抽取成各種數據需求。
2. 參與數據倉庫架構的設計及開發 。
3. 參與數據倉庫ETL流程優化及解決ETL相關技術問題。
4、熟悉主流資料庫技術,如oracle、Sql server、PostgeSQL等。
4、精通etl架構,有一定的etl開發經驗,了解日常作業的部署和調度。
5、會數據etl開發工具,如Datastage,Congos,Kettle等。

G. 大數據分析學習什麼內容

如需學習大數據分析推薦選擇【達內教育】,大數據分析學習內容如下:

1、數學知識
數學知識是【數據分析師】的基礎知識。初級數據分析師需要了解一些描述統計相關的基礎內容,有一定的公式計算能力。
2、分析工具
初級數據分析師數據透視表和公式使用必須熟練。還要學會一個統計分析工具,SPSS作為入門比較好。
3、編程語言
對於初級數據分析師,會寫SQL查詢、Hadoop和Hive查詢就可以。對於高級數據分析師,除了SQL以外,學習Python是很有必要,用來獲取和處理數據都是事半功倍。
4、業務理解
業務理解是數據分析師所有工作的基礎,數據的獲取方案、指標的選取、乃至最終結論的洞察,都依賴於數據分析師對業務本身的理解。感興趣的話點擊此處,免費學習一下

想了解更多有關大數據的相關信息,推薦咨詢【達內教育】。該機構致力於面向IT互聯網行業,培養軟體開發工程師、測試工程師、UI設計師、網路營銷工程師、會計等職場人才,擁有行業內完善的教研團隊,強大的師資力量,確保學員利益,全方位保障學員學習;更是與多家企業簽訂人才培養協議,全面助力學員更好就業。達內IT培訓機構,試聽名額限時搶購。

H. 搞ETL開發,要會些什麼啊

肯定要懂資料庫,ETL主要是寫存儲過程,還要懂一些linux命令。

I. ETL工程師要學什麼

技術方面:需要學習使用數據源、目標端工具的基本使用(如 oracle MySQL hive等);需要學習etl工具的安裝配置常用錯誤解決(如 kettle DataStage infa sqoop datax等)

理論方面:懂得數倉分層架構,維度建模等。

從ETL的字面來看,它主要包含三大階段,分別是數據抽取、數據轉換、數據載入。

1.數據抽取

這個階段的主要目標是匯總多種數據源,為下一步的轉換做准備。

2.數據轉換

這個階段是ETL的核心環節,也是最復雜的環節。它的主要目標是將抽取到的各種數據,進行數據的清洗、格式的轉換、缺失值填補、剔除重復等操作,最終得到一份格式統一、高度結構化、數據質量高、兼容性好的數據,為後續的分析決策提供可靠的數據支持。

3.數據載入

這個階段的主要目標是把數據載入至目的地,比如數據倉庫中。通常的做法是,將處理好的數據寫成特定格式(如parquet、csv等)的文件,然後再把文件掛載到指定的表分區上。也有些表的數據量很小,不會採用分區表,而是直接生成最終的數據表。

了解了ETL這部分的工作主要做什麼,接下來再來說作為ETL工程師需要具備哪些技能,這些也就是需要學習的重點——

1、精通SQL語言,具備存儲過程開發能力,能熟練進行SQL查詢優化;

2、熟悉Hive數據倉庫設計,了解數據倉庫模型及思想、維度建模思想,了解數據倉庫;

3、熟悉Hadoop、Spark、Flink、Kafka等相關技術;

4、熟練Python、Java中至少一種語言;

5、熟悉Mysql、Nosql等常見資料庫。

J. 大數據培訓課程大綱要學什麼課程

課綱不一樣,看是大數據開發還是大數據分析了,我學的大數據分析可視化,學的主版要有Python入門、權sql、oracle、tableau、帆軟、Informatica、Excel等等
我剛出來半年,視頻錄播可能還不算落後,有視頻可***

閱讀全文

與資料庫ETL培訓課程內容相關的資料

熱點內容
遼寧眾贏電子商務是真的嗎 瀏覽:195
產品培訓活動策劃方案 瀏覽:178
重視電子商務發展 瀏覽:132
國際電子商務示範法最新版 瀏覽:543
淺談電子商務對東莞企業的影響 瀏覽:727
消防培訓演練實施方案 瀏覽:976
銀行合規制度培訓計劃方案 瀏覽:19
電子商務投資協議 瀏覽:789
315策劃活動方案 瀏覽:420
河南星光電子商務 瀏覽:855
市場營銷學知到測試答案 瀏覽:420
學市場營銷的可以找什麼工作 瀏覽:220
市場營銷策劃專員崗位職責 瀏覽:633
如何讓避免跨界電子商務逃稅 瀏覽:141
非公黨建外出培訓班培訓方案 瀏覽:231
安全培訓方案模板下載 瀏覽:489
縣級教師培訓團隊項目實施方案 瀏覽:367
移動開門紅營銷方案 瀏覽:814
零食促銷方案範文 瀏覽:765
季度促銷活動獎勵方案 瀏覽:108