A. 誰能提供一份關於液相色譜培訓的小結
本次培訓主要講解了以下六個方面的內容:一、高效液相色譜法原理與方法發展二、高效液相色譜儀的原理、結構、使用和維護三、樣品制備四、色譜柱的原理、選擇及維護五、高效液相色譜數據處理及定性與定量分析六、高效液相色譜儀在各領域的應用由於高效液相色譜適於分析沸點高、相對分子量大,受熱易分解的不穩定的有機化合物、生物活性物質以及多種天然產物,而這些化合物約占所有有機化合物的80%,因此,高效液相色譜儀具有廣泛的使用范圍,對於有機監測工作也就非常重要。而高效液相色譜儀的維護又決定了工作效率,因此為了能更好的更快速的完成監測工作,必須要懂得維護儀器,當然也必要的學習儀器的一些基本維修技術。對於經常遇到的堵塞問題是由於磷酸鹽緩沖液在管路中沉積導致,解決辦法就是每次做完實驗先經純水再經甲醇沖洗。色譜柱是高效液相色譜儀的核心部分,它的好壞直接影響到樣品分離度的好壞,為了延長HPLC液相泵的使用壽命和維持其輸液的穩定性,必須注意以下幾方面的事項:1、防止任何固體微粒進入HPLC液相泵體,因為塵埃或其它任何雜質都會磨損HPLC液相柱塞、HPLC密封環、HPLC液相缸體和HPLC液相單向閥,因此應預先除去流動相中的任何固體微粒。流動相最好在玻璃容器內蒸餾,而常用的方法是過濾,可採用Millipore 濾膜(0.2um 或 05um) 等濾器。2、流動相不應含有任何腐蝕性物質,含有緩沖液的流動相不應保留在泵內,尤其是HPLC停泵過夜或更長時間的情況下。如果將含有緩沖液的流動相留在HPLC液相泵內,由於蒸發或泄漏,甚至只是由於溶液的靜止,就可能析出鹽的微小晶體,這些晶體將和上述固體微粒一樣損壞HPLC密封環和HPLC柱塞等。因此,必須HPLC泵入純水充分清洗後,再換成適合於HPLC色譜柱保存和有利於HPLC泵維護的溶劑(對於反相鍵合固定相,可以是甲醇或甲醇和水)。
3、HPLC泵工作時要留心防止溶劑瓶內的流動相用完,否則HPLC空泵運轉也磨損HPLC柱塞、HPLC密封環或HPLC缸體最終產生漏液。4、HPLC輸液泵的工作壓力不要超過規定的最高壓力,否則會使高壓密封環變形,產生漏液。5、流動相應先脫氣,以免在HPLC泵內產生氣泡,影響流量的穩定性,如果有大量氣泡HPLC泵就無法工作。而一些常見故障的原因和解決辦法也是得掌握的:1、沒有流動相流出,又無壓力指示。原因可能是HPLC泵內有大量的氣體,這時可打開泄壓閥,使HPLC泵在較大的流量(5ml/min)下運轉,將氣泡排盡,也可用一個50ml的注射器在泵出口處幫助抽出氣體。另一個原因可能是HPLC密封環磨損,需更換。2、HPLC壓力的流量不穩。原因可能是氣泡,需要排除,或者是單向閥內有異物,可以卸下HPLC單向閥,浸入丙酮內,進行超聲清洗。有時有可能是砂濾棒內有氣泡或被鹽的微小晶體粒或滋生的微生物部分堵塞,這時卸下砂濾棒浸入流動相內,超聲除氣泡,或將砂濾棒(片)浸入稀酸(如4mol/L硝酸)內迅速除去微生物或將鹽溶解,再立即清洗。3、HPLC壓力過高的原因,是管路被堵塞,需要清除或清洗。壓力降低的原因則可能是管路有泄漏。檢查堵塞或泄漏時可逐段進行。在管路中存在氣泡會造成色譜圖上出現尖銳的雜訊峰,嚴重時會造成分析靈敏度下降;氣泡變大進入流路或色譜柱時會使流動相的流速變慢或不穩定,使基線起伏。因此流動相必須預先脫氣,在注入樣品前也應注意排出樣品注射器中的空氣。本次培訓還指導了色譜柱的選擇,只有選擇合適的色譜柱才能取得很好的色譜峰,也就能很好的定性及定量分析。如果色譜柱經過一段時間的使用後有凹陷的情況,也可以自行填補,即打開柱頭,以相同或者相似的填料將凹陷的部分填平。對嚴重污染的柱子可以掉頭使用,但必須將連接檢測器的一端斷開,將污染物質沖走,若基線還是有雜峰,也可以進行挖補,往往可基本恢復。
B. 如何學會高效液相色譜
只要有儀器,用兩次就會了,沒什麼難得。
這種東西都保密,真是服了。
C. 高效液相色譜法心得體會論文
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送(最高輸送壓力可達4.9??107Pa);色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬);同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
特點
1.高壓:液相色譜法以液體為流動相(稱為載液),液體流經色譜柱,受到阻力較大,為了迅速地通過色譜柱,必須對載液施加高壓。一般可達150~350×105Pa。
2. 高速:流動相在柱內的流速較經典色譜快得多,一般可達1~10ml/min。高效液相色譜法所需的分析時間較之經典液相色譜法少得多,一般少於 1h 。
3. 高效:近來研究出許多新型固定相,使分離效率大大提高。
4.高靈敏度:高效液相色譜已廣泛採用高靈敏度的檢測器,進一步提高了分析的靈敏度。如熒光檢測器靈敏度可達10-11g。另外,用樣量小,一般幾個微升。
5.適應范圍寬:氣相色譜法與高效液相色譜法的比較:氣相色譜法雖具有分離能力好,靈敏度高,分析速度快,操作方便等優點,但是受技術條件的限制,沸點太高的物質或熱穩定性差的物質都難於應用氣相色譜法進行分析。而高效液相色譜法,只要求試樣能製成溶液,而不需要氣化,因此不受試樣揮發性的限制。對於高沸點、熱穩定性差、相對分子量大(大於 400 以上)的有機物(這些物質幾乎佔有機物總數的 75% ~ 80% )原則上都可應用高效液相色譜法來進行分離、分析。 據統計,在已知化合物中,能用氣相色譜分析的約佔20%,而能用液相色譜分析的約佔70~80%。
高效液相色譜按其固定相的性質可分為高效凝膠色譜、疏水性高效液相色譜、反相高效液相色譜、高效離子交換液相色譜、高效親和液相色譜以及高效聚焦液相色譜等類型。用不同類型的高效液相色譜分離或分析各種化合物的原理基本上與相對應的普通液相層析的原理相似。其不同之處是高效液相色譜靈敏、快速、解析度高、重復性好,且須在色譜儀中進行。
高效液相色譜法的主要類型及其分離原理
根據分離機制的不同,高效液相色譜法可分為下述幾種主要類型:
1 .液 — 液分配色譜法(Liquid-liquid Partition Chromatography)及化學鍵合相色譜(Chemically Bonded Phase Chromatography)
流動相和固定相都是液體。流動相與固定相之間應互不相溶(極性不同,避免固定液流失),有一個明顯的分界面。當試樣進入色譜柱,溶質在兩相間進行分配。達到平衡時,服從於下式:
式中,cs—溶質在固定相中濃度;cm--溶質在流動相中的濃度; Vs—固定相的體積;Vm—流動相的體積。LLPC與GPC有相似之處,即分離的順序取決於K,K大的組分保留值大;但也有不同之處,GPC中,流動相對K影響不大,LLPC流動相對K影響較大。
a. 正相液 — 液分配色譜法(Normal Phase liquid Chromatography): 流動相的極性小於固定液的極性。
b. 反相液 — 液分配色譜法(Reverse Phase liquid Chromatography): 流動相的極性大於固定液的極性。
c. 液 — 液分配色譜法的缺點:盡管流動相與固定相的極性要求完全不同,但固定液在流動相中仍有微量溶解;流動相通過色譜柱時的機械沖擊力,會造成固定液流失。上世紀70年代末發展的化學鍵合固定相(見後),可克服上述缺點。現在應用很廣泛(70~80%)。
2 .液 — 固色譜法
流動相為液體,固定相為吸附劑(如硅膠、氧化鋁等)。這是根據物質吸附作用的不同來進行分離的。其作用機制是:當試樣進入色譜柱時,溶質分子 (X) 和溶劑分子(S)對吸附劑表面活性中心發生競爭吸附(未進樣時,所有的吸附劑活性中心吸附的是S),可表示如下:
Xm + nSa ====== Xa + nSm
式中:Xm--流動相中的溶質分子;Sa--固定相中的溶劑分子;Xa--固定相中的溶質分子;Sm--流動相中的溶劑分子。
當吸附競爭反應達平衡時:
K=[Xa][Sm]/[Xm][Sa]
式中:K為吸附平衡常數。[討論:K越大,保留值越大。]
3 .離子交換色譜法(Ion-exchange Chromatography)
IEC是以離子交換劑作為固定相。IEC是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的溶質離子進行可逆交換,依據這些離子以交換劑具有不同的親和力而將它們分離。
以陰離子交換劑為例,其交換過程可表示如下:
X-(溶劑中) + (樹脂-R4N+Cl-)=== (樹脂-R4N+ X-) + Cl- (溶劑中)
當交換達平衡時:
KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-]
分配系數為:
DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-]
[討論:DX與保留值的關系]
凡是在溶劑中能夠電離的物質通常都可以用離子交換色譜法來進行分離。
4 .離子對色譜法(Ion Pair Chromatography)
離子對色譜法是將一種 ( 或多種 ) 與溶質分子電荷相反的離子 ( 稱為對離子或反離子 ) 加到流動相或固定相中,使其與溶質離子結合形成疏水型離子對化合物,從而控制溶質離子的保留行為。其原理可用下式表示:
X+水相 + Y-水相 === X+Y-有機相
式中:X+水相--流動相中待分離的有機離子(也可是陽離子);Y-水相--流動相中帶相反電荷的離子對(如氫氧化四丁基銨、氫氧化十六烷基三甲銨等);X+Y---形成的離子對化合物。
當達平衡時:
KXY = [X+Y-]有機相/[ X+]水相[Y-]水相
根據定義,分配系數為:
DX= [X+Y-]有機相/[ X+]水相= KXY [Y-]水相
[討論:DX與保留值的關系]
離子對色譜法(特別是反相)發解決了以往難以分離的混合物的分離問題,諸如酸、鹼和離子、非離子混合物,特別是一些生化試樣如核酸、核苷、生物鹼以及葯物等分離。
5 .離子色譜法(Ion Chromatography)
用離子交換樹脂為固定相,電解質溶液為流動相。以電導檢測器為通用檢測器,為消除流動相中強電解質背景離子對電導檢測器的干擾,設置了抑制柱。試樣組分在分離柱和抑制柱上的反應原理與離子交換色譜法相同。
以陰離子交換樹脂(R-OH)作固定相,分離陰離子(如Br-)為例。當待測陰離子Br-隨流動相(NaOH)進入色譜柱時,發生如下交換反應(洗脫反應為交換反應的逆過程):
抑制柱上發生的反應:
R-H+ + Na+OH- === R-Na+ + H2O
R-H+ + Na+Br- === R-Na+ + H+Br-
可見,通過抑制柱將洗脫液轉變成了電導值很小的水,消除了本底電導的影響;試樣陰離子Br-則被轉化成了相應的酸H+Br-,可用電導法靈敏的檢測。
離子色譜法是溶液中陰離子分析的最佳方法。也可用於陽離子分析。
6 .空間排阻色譜法(Steric Exclusion Chromatography)
空間排阻色譜法以凝膠 (gel) 為固定相。它類似於分子篩的作用,但凝膠的孔徑比分子篩要大得多,一般為數納米到數百納米。溶質在兩相之間不是靠其相互作用力的不同來進行分離,而是按分子大小進行分離。分離只與凝膠的孔徑分布和溶質的流動力學體積或分子大小有關。試樣進入色譜柱後,隨流動相在凝膠外部間隙以及孔穴旁流過。在試樣中一些太大的分子不能進入膠孔而受到排阻,因此就直接通過柱子,首先在色譜圖上出現,一些很小的分子可以進入所有膠孔並滲透到顆粒中,這些組分在柱上的保留值最大,在色譜圖上最後出現。
氣相色譜法(gas chromatography 簡稱GC)是色譜法的一種。色譜法中有兩個相,一個相是流動相,另一個相是固定相。如果用液體作流動相,就叫液相色譜,用氣體作流動相,就叫氣相色譜。
氣相色譜法由於所用的固定相不同,可以分為兩種,用固體吸附劑作固定相的叫氣固色譜,用塗有固定液的擔體作固定相的叫氣液色譜。
按色譜分離原理來分,氣相色譜法亦可分為吸附色譜和分配色譜兩類,在氣固色譜中,固定相為吸附劑,氣固色譜屬於吸附色譜,氣液色譜屬於分配色譜。
按色譜操作形式來分,氣相色譜屬於柱色譜,根據所使用的色譜柱粗細不同,可分為一般填充柱和毛細管柱兩類。一般填充柱是將固定相裝在一根玻璃或金屬的管中,管內徑為2~6mm。毛細管柱則又可分為空心毛細管柱和填充毛細管柱兩種。空心毛細管柱是將固定液直接塗在內徑只有0.1~0.5mm的玻璃或金屬毛細管的內壁上,填充毛細管柱是近幾年才發展起來的,它是將某些多孔性固體顆粒裝入厚壁玻管中,然後加熱拉製成毛細管,一般內徑為0.25~0.5mm。
D. 高效液相色譜儀的工作原理
高效液相色譜儀工作原理;高壓泵將貯液罐的流動相經進樣器送入色譜柱中,然後從檢測器的出口流出,這時整個系統就被流動相充滿。當欲分離樣品從進樣器進入時,流經進樣器的流動相將其帶入色譜柱中進行分離,分離後不同組分依先後順序進入檢測器,記錄儀將進入檢測器的信號記錄下來,得到液相色譜圖。
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送,色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬),同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
(4)高效液相色譜檢測基礎知識培訓擴展閱讀
高效液相色譜儀配置高壓二元泵或者低壓四元泵,而泵的沖程體積以及混合器的體積大小,均會對色譜基線噪音水平產生影響,特別是在梯度洗脫的時候。一般地泵的沖程體積越小以及混合器的體積相對越大,由輸液造成的脈沖相對越小,對於梯度變化的響應能力越高,基線越平緩,
在應用二元泵的時,需要注意的是,當二元混合中的其中一元流動相的比例小於5%的時候,特別是在使用正相等度洗脫對一些醫葯中間體及終產品進行手性拆分的時候,最好使用單泵預混合的方式。避免由於泵在低比例時泵液精度相對較差,而導致色譜基線出現沖程相關峰,
E. 高效液相色譜儀操作具體方法
你上「色譜世界」上問問看看吧。這是個非常專業的網站,對你會有很大幫助的。
F. 高效液相色譜原理
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送(最高輸送壓力可達4.9107Pa);色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬);同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
一、特點:
1.高壓:液相色譜法以液體為流動相(稱為載液),液體流經色譜柱,受到阻力較大,為了迅速地通過色譜柱,必須對載液施加高壓。一般可達150~350×105Pa。
2. 高速:流動相在柱內的流速較經典色譜快得多,一般可達1~10ml/min。高效液相色譜法所需的分析時間較之經典液相色譜法少得多,一般少於 1h 。
3. 高效:近來研究出許多新型固定相,使分離效率大大提高。
4.高靈敏度:高效液相色譜已廣泛採用高靈敏度的檢測器,進一步提高了分析的靈敏度。如熒光檢測器靈敏度可達10-11g。另外,用樣量小,一般幾個微升。
5. 適應范圍寬:氣相色譜法與高效液相色譜法的比較:氣相色譜法雖具有分離能力好,靈敏度高,分析速度快,操作方便等優點,但是受技術條件的限制,沸點太高的物質或熱穩定性差的物質都難於應用氣相色譜法進行分析。而高效液相色譜法,只要求試樣能製成溶液,而不需要氣化,因此不受試樣揮發性的限制。對於高沸點、熱穩定性差、相對分子量大(大於 400 以上)的有機物(這些物質幾乎佔有機物總數的 75% ~ 80% )原則上都可應用高效液相色譜法來進行分離、分析。 據統計,在已知化合物中,能用氣相色譜分析的約佔20%,而能用液相色譜分析的約佔70~80%。
二、性質及原理:高效液相色譜按其固定相的性質可分為高效凝膠色譜、疏水性高效液相色譜、反相高效液相色譜、高效離子交換液相色譜、高效親和液相色譜以及高效聚焦液相色譜等類型。用不同類型的高效液相色譜分離或分析各種化合物的原理基本上與相對應的普通液相層析的原理相似。其不同之處是高效液相色譜靈敏、快速、解析度高、重復性好,且須在色譜儀中進行。
高效液相色譜法的主要類型及其分離原理
根據分離機制的不同,高效液相色譜法可分為下述幾種主要類型:
1 .液 — 液分配色譜法(Liquid-liquid Partition Chromatography)及化學鍵合相色譜(Chemically Bonded Phase Chromatography) 流動相和固定相都是液體。流動相與固定相之間應互不相溶(極性不同,避免固定液流失),有一個明顯的分界面。當試樣進入色譜柱,溶質在兩相間進行分配。 LLPC與GPC有相似之處,即分離的順序取決於K,K大的組分保留值大;但也有不同之處,GPC中,流動相對K影響不大,LLPC流動相對K影響較大。
a. 正相液 — 液分配色譜法(Normal Phase liquid Chromatography): 流動相的極性小於固定液的極性。
b. 反相液 — 液分配色譜法(Reverse Phase liquid Chromatography): 流動相的極性大於固定液的極性。
c. 液 — 液分配色譜法的缺點:盡管流動相與固定相的極性要求完全不同,但固定液在流動相中仍有微量溶解;流動相通過色譜柱時的機械沖擊力,會造成固定液流失。上世紀70年代末發展的化學鍵合固定相(見後),可克服上述缺點。現在應用很廣泛(70~80%)。
2 .液 — 固色譜法
流動相為液體,固定相為吸附劑(如硅膠、氧化鋁等)。這是根據物質吸附作用的不同來進行分離的。其作用機制是:當試樣進入色譜柱時,溶質分子 (X) 和溶劑分子(S)對吸附劑表面活性中心發生競爭吸附(未進樣時,所有的吸附劑活性中心吸附的是S),可表示如下:
Xm + nSa ====== Xa + nSm
式中:Xm--流動相中的溶質分子;Sa--固定相中的溶劑分子;Xa--固定相中的溶質分子;Sm--流動相中的溶劑分子。
當吸附競爭反應達平衡時:
K=[Xa][Sm]/[Xm][Sa]
式中:K為吸附平衡常數。[討論:K越大,保留值越大。]
3 .離子交換色譜法(Ion-exchange Chromatography)
IEC是以離子交換劑作為固定相。IEC是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的溶質離子進行可逆交換,依據這些離子以交換劑具有不同的親和力而將它們分離。
以陰離子交換劑為例,其交換過程可表示如下:
X-(溶劑中) + (樹脂-R4N+Cl-)=== (樹脂-R4N+ X-) + Cl- (溶劑中)
當交換達平衡時:
KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-]
分配系數為:
DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-]
[討論:DX與保留值的關系]
凡是在溶劑中能夠電離的物質通常都可以用離子交換色譜法來進行分離。
G. 高效液相色譜法的原理是什麼
高效液相色譜法的原理是以液體為流動相,採用高壓輸液系統,將具有不同極性的單一溶劑或不同比例的混合溶劑、緩沖液等流動相泵入裝有固定相的色譜柱,在柱內各成分被分離後,進入檢測器進行檢測。
高效液相色譜法有「四高一廣」的特點:
①高壓:流動相為液體,流經色譜柱時,受到的阻力較大,為了能迅速通過色譜柱,必須對載液加高壓。
②高速:分析速度快、載液流速快,較經典液體色譜法速度快得多,通常分析一個樣品在15~30分鍾,有些樣品甚至在5分鍾內即可完成,一般小於1小時。
③高效:分離效能高。可選擇固定相和流動相以達到最佳分離效果,比工業精餾塔和氣相色譜的分離效能高出許多倍。
④高靈敏度:紫外檢測器可達0.01ng,進樣量在μL數量級。
⑤應用范圍廣:百分之七十以上的有機化合物可用高效液相色譜分析,特別是高沸點、大分子、強極性、熱穩定性差化合物的分離分析,顯示出優勢。
(7)高效液相色譜檢測基礎知識培訓擴展閱讀
高效液相色譜還有色譜柱可反復使用、樣品不被破壞、易回收等優點,但也有缺點,與氣相色譜相比各有所長,相互補充。高效液相色譜的缺點是有「柱外效應」。
在從進樣到檢測器之間,除了柱子以外的任何死空間(進樣器、柱接頭、連接管和檢測池等)中,如果流動相的流型有變化,被分離物質的任何擴散和滯留都會顯著地導致色譜峰的加寬,柱效率降低。高效液相色譜檢測器的靈敏度不及氣相色譜。
空間排阻色譜法以凝膠(gel) 為固定相。它類似於分子篩的作用,但凝膠的孔徑比分子篩要大得多,一般為數納米到數百納米。
溶質在兩相之間不是靠其相互作用力的不同來進行分離,而是按分子大小進行分離。分離只與凝膠的孔徑分布和溶質的流動力學體積或分子大小有關。試樣進入色譜柱後,隨流動相在凝膠外部間隙以及孔穴旁流過。
在試樣中一些太大的分子不能進入膠孔而受到排阻,因此就直接通過柱子,首先在色譜圖上出現,一些很小的分子可以進入所有膠孔並滲透到顆粒中,這些組分在柱上的保留值最大,在色譜圖上最後出現。
H. 高效液相色譜含量測定中分析方法認證的主要內容
含量方法學認證主要考察以下幾個性質:
1.專屬性:查看被測物質與被測結果間是否正確且唯一對應。
考察方法:將處被測成分外的其他物質均做空白乾擾對照,包括流動相、輔料空白、溶劑空白、其他成分(多組分產品)空白、如果方法有衍生還應包括衍生空白等等。
2.精密度:查看方法多次測定是否能夠得到相同的結果。
考察方法:重復性試驗,應包括儀器精密度(對照多次進樣查看偏差),方法精密度(多次測定同一樣品查看結果,該測定應包含全部試驗過程,即配製多個供試品溶液),中間精密度(不同人員不同時間不同儀器,最好試劑和實驗室也更換,測定同一樣品,查看結果偏差)。RSD應小於2%
3.准確度:測得結果與實際量間是否一致。
考察方法:通過回收率試驗來確定,應包含3個濃度至少9個樣品的測定結果,測定時應採取對照品(或原料)加輔料等其他干擾,計算回收率和結果偏差。視方法而定一般回收率應在95~105%,RSD小於2%
4.線性:在線性范圍內,測得峰面積與被測物質的量是否能夠呈線性關系。
考察方法:線性試驗,應取至少5個濃度點,繪制標准曲線,計算線性相關系數,液相色譜法中一般認為R=0.9999以上才能算呈線性。
5.定量限:當物質達到定量限濃度以上時,該方法可以對該物質進行定量檢測。
考察方法:當被測物峰高:信號噪音=10:1時,當前濃度即為定量限。如果想做更加可靠的實驗,應在定量限處考察精密度和回收率。
6.耐用性:方法對實驗環境的耐受程度。即當實驗條件發生細微變化時,方法仍然能夠保持測定的准確。
考察方法:通過幾項實驗來確定:溶液穩定性(相同溶液在幾小時內多次進樣查看結果),色譜條件變化(應包括柱溫、流速、色譜柱批次、檢測波長等條件的輕微變化)。