1. 风电核电
我也是学电的,今年找了工作。核电的这几年的确发展很快,而且上马的工程很多,找核电的单位很多。从前景上来看是核电远远好于风电。
但是外说一句,从工作的性质上来说,大家都是学电的,也知道,核电的危险性的确很高,远远没有对外宣传的那样好,真的。核泄漏的确是极小概率事件,但是核电站的辐射的确是很高的,不骗人。
2. 我国什么地区适合风力发电风力发电优点是什么
中国的风能资源
我国幅员辽阔,海岸线长,风能资源比较丰富。据国家气象局估算,全国风能密度为100W/m2,风能资源总储量约1.6X105MW,特别是东南沿海及附近岛屿、内蒙古和甘肃走廊、东北、西北、华北和青藏高原等部分地区,每年风速在3m/s以上的时间近4000h左右,一些地区年平均风速可达6~7m/s以上,具有很大的开发利用价值。有关专家根据全国有效风能密度、有效风力出现时间百分率,以及大于等于3m/s和6m/s风速的全年累积小时数,将我国风能资源划分为如下几个区域。
1、东南沿海及其岛屿,为我国最大风能资源区
这一地区,有效风能密度大于、等于200W/m2的等值线平行于海岸线,沿海岛屿的风能密度在300W/m2以上,有效风力出现时间百分率达80~90%,大于、等于8 m/s的风速全年出现时间约7000~8000h,大于、等于 6 m/s的风速也有4000 h左右。但从这一地区向内陆,则丘陵连绵,冬半年强大冷空气南下,很难长驱直下,夏半年台风在离海岸50km时风速便减少到68%。所以,东南沿海仅在由海岸向内陆几十公里的地方有较大的风能,再向内陆则风能锐减。在不到100km的地带,风能密度降至50W/m2以下,反为全国风能最小区。但在福建的台山、平潭和浙江的南麂、大陈、嵊泗等沿海岛屿上,风能却都很大。其中台山风能密度为534.4W/m2, 有效风力出现时间百分率为90%,大于、等于3 m/s的风速全年累积出现7905h。换言之,平均每天大于、等于3 m/s的风速有21.3h,是我国平地上有记录的风能资源最大的地方之一。
2、内蒙古和甘肃北部,为我国次大风能资源区
这一地区,终年在西风带控制之下,而且又是冷空气入侵首当其冲的地方,风能密度为200~300W/m2,有效风力出现时间百分率为70%左右,大于、等于3 m/s的风速全年有5000h以上, 大于、等于6m/s的风速在2O00h以上,从北向南逐渐减少,但不象东南沿海梯度那么大。风能资源最大的虎勒盖地区,大于、等于3 m/S和大于、等于6m/s的风速的累积时数,分别可达7659h和4095h。这一地区的风能密度,虽较东南沿海为小,但其分布范围较广,是我国连成一片的最大风能资源区。
3、黑龙江和吉林东部以及辽东半岛沿海,风能也较大
风能密度在200W/m2以上,大于、等于3m/s和6m/s的风速全年累积时数分别为5000~7O00h和3000h。
4、青藏高原、三北地区的北部和沿海,为风能较大区
这个地区(除去上述范围),风能密度在150~200W/m2之间,大于、等于3 m/s的风速全年累积为 4000~5000h, 大于、等于6m/s风速全年累积为3000h以上。青藏高原大于、等于3 m/s的风速全年累积可达6500h,但由于青藏高原海拔高,空气密度较小,所以风能密度相对较小,在 4000m的高度,空气密度大致为地面的67%。也就是说, 同样是8m/s的风速,在平地为313.6W/m2,而在4000m的 高度却只有209.3W/m2。所以,如果仅按大于、等于3 m/s 和大于、等于6m/s的风违的出现小时数计算,青藏高原应属于最大区,而实际上这里的风能却远较东南沿海岛屿为小。
从三北北部到沿海,几乎连成一片,包围着我国大陆。 大陆上的风能可利用区,也基本上同这一地区的界限相一致。
5、云贵川,甘肃、陕西南部,河南、湖南西部,福建、 广东、广西的山区,以及塔里木盆地,为我国最小风能区
有效风能密度在50W/m2以下,可利用的风力仅有20%左右,大于、等于3m/s的风速全年累积时数在2000h以下,大于、 等于6 m/s的风速在15Oh以下。在这一地区中,尤以四川盆地和西双版纳地区风能最小,这里全年静风频率在60%以上,如绵阳为67%,巴中为60%,阿坝为67%,恩施为75%, 德格为63%,耿马孟定为72%,景洪为79%。大于、等于3m/s的风速全年累积仅300h,大于、等于6m/s的风速仅20h。 所以,这一地区除高山顶和峡谷等特殊地形外,风能潜力很低,无利用价值。
6、在4和5地区以外的广大地区,为风能季节利用区
有的在冬、春季可以利用,有的在夏、秋季可以利用。这一地区,风能密度在50~100W/m2之间,可利用风 力为30~40%,大于、等于3m/s的风速全年累积在2000~4000h,大于、等于6m/s的风速在1000h左右。
下面介绍一下国家气象局的有关专家关于我国风能区划的划分意见。采用三级区划指标体系。
第一级区划指标:主要考虑有效风能密度的大小和全年有效累积小时数。将年平均有效风能密度大于200W/m2、 3~20m八风速的年累积小时数大于500Oh的划为风能丰富区,用“ Ⅰ”表示;将150~200W/m2、 3~20m/s风速的年累积小时数在3000~5000h的划为风能较丰富区,用 “Ⅱ”表示;将50~150W/m2、3~20m/s风速的年累积小时数在2000~3000h的划为风能可利用区,用“Ⅲ”表示;将50W/m2以下、3~20m/s风速的年累积小时数在2000h 以下的划为风能贫乏区,用“ Ⅳ”表示。在代表这四个区的罗马数字后面的英文字母,表示各个地理区域。
第二级区划指标:主要考虑一年四季中各季风能密度和有效风力出现小时数的分配情况。利用1961~1970年间每日4次定时观测的风速资料,先将483个站风速大于、等于 3m/s的有效风速小时数点成年变化曲线。然后,将变化趋势一致的归在一起,作为一个区。再将各季有效风速累积小时数相加,按大小次序排列。这里,春季指3~5月,夏季指6~8月,秋季指9~11月,冬季指12、1、2月。分别以 1、2、3、4表示春、夏、秋、冬四季。如果春季有效风速(包括有效风能)出现小时数最多,冬季次多,则用“14”表示;如果秋季最多,夏季次多,则用“32”表示; 其余依此类推。
第三级区划指标:风力机最大设计风速一般取当地最大风速。在此风速下,要求风力机能抵抗垂直于风的平面上所受到的压强。使风机保持稳定、安全,不致产生倾斜或被破坏。由于风力机寿命一般为20~30年,为了安全,我们取30年一遇的最大风速值作为最大设计风速。根据我国建筑结构规范的规定,“以一般空旷平坦地面、离地10m高、 3 0年一遇、自记10min平均最大风速”作为进行计算的标准。计算了全国700多个气象台、站30年一遇的最大风速。按照风速,将全国划分为4级:风速在35~40m/s以上(瞬时风速为50~60m/s),为特强最大设计风速,称特强压型;风速30~35m/s(瞬时风速为40~50m/s),为强设计风速,称强压型;风速25~30m/s(瞬时风速为30~40m/s),为中等最大设计风速,称中压型;风速25m/s以下,为弱最大设计风速,称弱压型。4个等级分别以字母a、b、c、d表示。
风力发电优点
1、 一千七百多年前我国就出现风车,小型风机主要应用在无电地区,如内蒙古自治区的牧民照明、看电视。大型风机是从国外引进或部分引进技术,它造价高,是小水电造价的3-4倍,它巨大机身运输时需要4级公路,20长的集装箱车,200吨大吊车,所以它运输、安装费用高。而且要求风力资源非常好的地方才能投资,它上网电价受到政策的扶持,如东山岛风电上网电价是0.75元/度。所以限制了它的发展速度。
2、 风力发展只有走进市场,开发与小水电造价相当水平的形式方有可能快速发展起来。所以本人始终为这个目标努力探索。要设计研究开发过程中,选择最经济的方案。
3、 发电经济指标概念,一度电一元含义:一元钱卖来的设备,在一年内能发出一度电,上网电价0.33元/度,也就三年可回收投资成本,若加上生产成本和税收 0.08元/度。则需要四年回收投资成本。这是以民间投资来算法。若风电有国家的银行的贷款,返还年限十年,则上网电价0.20元/度,还是人有利可图,可以投资的。
4、 风力发电为何步履坚难:它是一个综合性技术很强的项目,它涉及:电机学、空气动力学、材料力学、自动控制、微电脑应用、机械系统工程、电力系统工程。我也是经过多少次失败和弯路,才到达这个终点。
5、 古人说隔行如隔山,一个人那能知道这么多行的技术,只要有一个环节人们不了解就会怀疑这项技术的可行性。所以我找过许多投资者,他们有的是自己找上门的,但他们了解之后就退缩了。技术复杂性、难点多。他们非要看到发电机发电并从电力公司到钱,并证明是有利可图,方愿意投资。
6、 本设计方案是可以为国家节约可观的资金。若用风力发电量补充电力的5%空缺,按目前传统投资方案需要四千亿元,而用我的方案只要投资一千亿元,可节约三千亿元,可建造一个长江三峡电站。
7、 目前缺电局面,疯狂发展火电厂,带来严重的环境污染,火电站而且用是的劣质煤。我国已有70%的国地受到酸雨的影响,水体酸化会改变水生生态,而土壤酸化会使土壤贫瘠化,导致陆地生态系统的退化。大家应该大力宣传使用绿色能源
8、 我国用至少五千亿的外汇购买原油。苏淅两省工厂缺电上千万千瓦,一天有电一天没有电,用柴油机发电,严重影响产品质量和定单。一度电能带来五元的工业产值。目前电力缺口10%:二千万千瓦,发展风力发电意义非常重大。
9、 以电代替天燃气起家万家,可节约外汇,又经济,因为十度的电与一公斤的天燃气相当热量,一度电0.5元与的一瓶75元天燃气价值相当,电磁炉的热效率普遍高于80%,有的可达到90%。它卫生、清洁,环保。传统的煤炭、石油气、煤气在燃烧时,大量未充分燃烧的杂质散落到空气中,同时释放出一氧化碳、二氧化硫等有害物质对导室、环境污染很大,影响人体健康;。我国一年进口原油一点二亿吨需要四、五千亿外汇,今天什么都没有听到节约外汇的宣传?
10、 小型风机安装方便,二个人一天就能安装好一台,不用修公路,每个另件都在一百公斤发下,不用大吊车,运输、安装费用低,风机由微电脑控制,自动化高实行无人置守。该结构简单操作、维护方便。产品可面向全世界,中美洲南美洲非洲,这些国家电力网很落后,没有象我国这样的电力网络。
11、 若在三北防护林用上小型风机发电,又能防砂,又能让北方人民用电采暖,又解决环保问题,是一个一举三得好事。
12、 小型风机不占农业土地资源,荒山野岭那里风大,最适应风机安装,它不象小水电与农业争土地。
地球是我们的家,世界上五个人有一个是中国人,我们应当做一点有利地球的事....。
3. 中国风电资讯开通的风电商情网
http://www.windss.cn/ 宣传无堆
4. 哪位大侠有风电与光伏企业的宣传册,需要源文件。
我有个朋友是做光伏发电的,他自己开的店。
5. 风力发电机的销售旺季是什么时候
这没有规律的,一般主要看风力发电机的质量、公司诚信度、价格以及售后服务等方面决定,加上必要广告宣传,这些环节都做好了,在投标时中标的机会就会很大。
6. 风电安装行业公司。 求宣传语
精益求精,风电品质。
7. 风能为一种可再生的绿色能源,风力发电已被广泛应用,风力发电是将通过风力发电
新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。能源世界有最全面的资料免费下载
参考资料http://bbs.chinagb.net/?fromuid=69687
[编辑本段]分类
新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。
据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被是做垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等
[编辑本段]新能源概况
据估算,每年辐射到地球上的太阳能为17.8亿千瓦,其中可开发利用500~1000亿度。但因其分布很分散,目前能利用的甚微。地热能资源指陆地下5000米深度内的岩石和水体的总含热量。其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。限于技术水平,现尚处于小规模研究阶段。当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。
[编辑本段]常见新能源形式概述
(具体内容详见各能源形式所对应的词条)
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。
太阳能可分为2种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2;,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源。氢能可以作飞机、汽车的燃料,可以用作推动火箭动力。
海洋渗透能
能源世界有最全面的资料免费下载
参考资料http://bbs.chinagb.net/?fromuid=69687
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。
[编辑本段]新能源的发展现状和趋势
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。
目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。
我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。
新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。
太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。
风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。
早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。
新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。
随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。
[编辑本段]新能源的环境意义和能源安全战略意义
我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。
国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。
此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。
新的能源是什么
1
新能源,包括太阳能、风能、地热能、海洋能、生物质能和其他可再生能源。合理的开发利用新能源,可以改善和优化能源结构,保护环境,提高人民生活质量,促进国民经济和社会可持续发展。
新能源开发利用主要包括新能源技术和产品的科研、实验、推广、应用及其生产、经营活动。新能源的开发利用,应当与经济发展相结合,遵循因地制宜、多能互补、综合利用、讲求效益和开发与节约并举的原则,宣传群众,典型示范,效益引导,实现能源效益、环境效益、经济效益和社会效益的统一。
2
随着科学技术和社会生产力的不断发展,能源的问题显得越来越重要。目前,全世界的能源仍以煤、石油和天然气等化石燃料为主。这些化石燃料储量有限,同时它们又是极其宝贵的化工原料,可以从中提炼和加工出各种化学纤维、塑料、橡胶和化肥等化工产品。将这样重要的化工原料作为能源来使用实在可惜。随着社会生产力的发展和人类生活水平的提高,世界能源的消耗量愈来愈大。据估计,全世界石油、天然气和煤的储量最多只能供给人类使用一、二百年。因此,摆在人类面前的一项紧迫的战略任务就是探索新能源。目前研究开发的新能源主要有以下几种:
1.地热能与潮汐能
可利用的地热资源是地下热水、地热蒸气和热岩层。地下热水层一般在地下两千多米深处,温度80℃左右。将地下热水降低压力使之变成蒸气(在47.34 kPa时水80℃沸腾),可推动汽轮发电机发电。
潮汐能利用的是海水涨落造成的水位差。此种能量可以作为动力来推动水轮机发电。地球上潮汐涨落中蕴藏的能量是巨大的,但建造大规模的潮汐电站技术上有很多困难,成本也较高。
2.太阳能
太阳每年辐射到地球表面的能量约为5×10^22J,相当于目前世界能量消耗的1.3万倍,可以说太阳能是取之不尽用之不竭的无污染的理想能源。因此,太阳能的收集利用是当代科学家十分感兴趣的问题。
目前太阳能利用主要有三种形式。一种是直接利用太阳辐射热,建成太阳灶、太阳能热水器,太阳房(用于采暖)和塑料大棚等,或利用太阳能来发电。太阳能电站是利用集热器吸收太阳辐射的热量,其蓄热材料(液态金属)温度可高达1000℃左右。所吸收的热量通过热交换器将水变成水蒸气推动汽轮机发电。这种转换方式称之为光-热转换。第二种是光-电转换,即利用太阳能电池将太阳能直接转换成电能。太阳能电池种类较多,主要有单晶硅电池、砷化镓电池、磷化铟电池和多晶硅电池等。目前太阳能电池效率还比较低,成本也比较高。它主要用于人造卫星等宇宙飞行器作为各种仪器设备的动力。第三种是光-化学转换,即将太阳辐射直接转换成化学能。绿色植物的光合作用就是光-化学转换,但它还不能完全受人控制。因此,研究各种完全可控的光-化学转换方法也是当今世界重大的研究课题之一。近年来发现,太阳能辐射到某一光化学反应体系后,能形成动力学上稳定的光产物,使光能转化为化学能而储存起来。另外,在催化剂存在时,由太阳光直接分解水而制得氢和氧的方法也是太阳能利用较有发展前途的一条途径。发展氢能具有独特的优越性。首先,氢的原料是水,资源丰富。另外氢燃烧后的热值较高,1g 氢燃烧后可放出143 kJ的热量,而1g煤燃烧只有31~32kJ,1g汽油燃烧也只有48kJ。还有氢燃烧生成水,它来源于水又还原于水,是顺应自然的一种循环,不会打乱自然界的平衡。又因燃烧产物无烟尘以及其它污染物,所以氢能又是无污染的清洁能源。
虽然,地球接受太阳的总能量很大,但是由于其能量密度很低,取得单位能量的一次投资大,能量转换效率有待提高。
3.核能
原子核裂变和聚变时都放出巨大的能量。原子核能是一种比较理想的能源。
(1)核裂变能
裂变是较重的原子核在足够能量的中子轰击下分裂成较轻原子核的过程。当235U原子核发生裂变时,分裂成两个不相等的碎片和若干个中子。裂变过程相当复杂,已经发现裂变产物有35种元素,放射性核素有200种以上。下面是235U裂变中的一种方式:
[编辑本段]未来的几种新能源
波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。
可燃冰:这是一种与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。
煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。
微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。
能源世界有最全面的资料免费下载
参考资料http://bbs.chinagb.net/?fromuid=69687
参考资料:http://bbs.chinagb.net/?fromuid=69687
8. 大数据时代,为风电运维带来哪些机遇
实现智能化风场,建立地区运维中心,实现风电场无人值守的美好的未来。。
放心,现在连一些基本的数据采集问题都没解决,大数据云平台智能化之类的虽然是发展趋势,但是暂时都是纸上谈兵。工业4.0虽好,但是行业连工业3.0都没有解决。
顺道鄙视下整天拿这些东西搞宣传不干实事的某些风机厂家。
9. 有关风电行业杂志,急求
MWE《现代风能》杂志。既是了解行业趋势、掌握最新资讯的重要窗口,也是行业沟通交流与合作贸易的最佳平台,更是厂商宣传企业形象、推广产品及服务的纽带和桥梁。
10. 风电开工的地区
河北张北高原风力资源丰富,(属张家口北部地区一带,均建设风力发电,每年都有工程项目)
1、其它地方不知道,但可以根据地理气象知识分析:内蒙古中西部,辽宁西北部,河北北部,山西、陕西北部,甘肃西北部,宁夏全境冬春之际受蒙古高压气团南移影响,风力强盛;
2、山东东北部,江苏、浙江、福建、广东这些省分的沿海地区进入春夏,太平洋暖湿气流北上形成季风,加上海陆因素,由于陆地和海洋的比热不同,白天风向由海洋吹向陆地,夜晚由陆地吹向海洋,风力资源丰富;
3、地貎因素:在同等气流控制的地区,平坦的地区空气流动不受山脉阻挡,风力强劲,山区风力相对较弱。这都是风力利用要考虑的因素。
4、风是由大气热力不同引起的大气流动,在我国中原地区如河南、安徽、湖北等地,由于冷暖空气长俄途跋涉,山脉和地表植被阻挡,空气流动相对减弱,开展风力发电效果相对差些,投资大于收益小。
由于投资风力电站不是具体几个公司,难以掌握什么地方在建风电工程,只能根据风力资源丰富的地方进行判断,从气压地图上根据等压线风力流动的位置上找出该地区的县市,从而进一步上网具体到某个县市网站,查它的风力发电宣传,然后获取确切的信息。
希望对你有帮助。