① BP网的功能及导高预测适用性
采用BP算法的前馈神经网是神经网络在各个领域中应用最广泛的一种,已经成功解决了大量实际问题。BP网的广泛应用,归因于其主要能力:具有非线性映射能力、泛化能力与容错能力。
多层前馈网能学习和存储大量输入-输出模式映射关系,即使不了解描述这种映射关系的数学方程,只要能提供足够多的样本模式对以供BP网络进行学习训练,它便可以完成由n维输入空间到m维输出空间的非线性映射,即非线性映射能力。在工程上及许多技术领域中,对某一输入 输出系统常常积累了大量相关的输入 输出数据,但仍未掌握其内部蕴涵的规律,无法用数学方法来描述该规律。对难以得到解析解、缺乏专家经验,但能够表示和转化为模式识别或非线性映射的这类问题,多层前馈网络具有无可比拟的优势。通过训练的多层前馈网络,将所提取的样本对中的非线性映射关系存储在权值矩阵中,当向网络输入训练时未曾见的非样本数据时,网络也能完成由输入空间向输出空间的正确映射,即泛化能力,是衡量多层前馈网性能优劣的一个重要方面。由于权矩阵的调整是从大量的样本中提取统计特性的过程,反映正确规律的知识来自全体样本,个别样本中的误差不能左右对矩阵的调整。所以多层前馈网允许输入样本中带有较大的误差甚至个别错误,即容错能力。
标准算法在应用中具有训练次数多,学习效率低,收敛速度慢,隐节点的选取缺乏理论指导,训练时学习新样本有遗忘旧样本的趋势,容易形成局部极小而得到局部全优等缺点,通过要权值调整公式中增加动量项α、自适应调节学习率η、在转移函数中引入陡度因子λ等方法,有效改进了BP算法,进一步提高其适用性。
因此,采用BP人工神经网络建立导水裂隙带高度与其影响因子之间的非线性映射关系,并发挥BP网的泛化能力,输入影响因子,对导水裂隙带高度进行预测,具有无可比拟的优越性。
② bp神经网络提高泛化能力有几种方法
常规的几种增强泛化能力的方法,罗列如下:1、较多的输入样本可以提高泛化能力;
但不是太多,过多的样本导致过度拟合,泛化能力不佳;样本包括至少一次的转折点数据。
2、隐含层神经元数量的选择,不影响性能的前提下,尽量选择小一点的神经元数量。隐含层节点太多,造成泛化能力下降,造火箭也只要几十个到几百个神经元,拟合几百几千个数据何必要那么多神经元?
3、误差小,则泛化能力好;误差太小,则会过度拟合,泛化能力反而不佳。
4、学习率的选择,特别是权值学习率,对网络性能有很大影响,太小则收敛速度很慢,且容易陷入局部极小化;太大则,收敛速度快,但易出现摆动,误差难以缩小;一般权值学习率比要求误差稍微稍大一点点;另外可以使用变动的学习率,在误差大的时候增大学习率,等误差小了再减小学习率,这样可以收敛更快,学习效果更好,不易陷入局部极小化。
5、训练时可以采用随时终止法,即是误差达到要求即终止训练,以免过度拟合;可以调整局部权值,使局部未收敛的加快收敛。
③ 优化初始权值及阈值为什么可以提高bp神经网络识别率
bp的学习过程就是不断的网络训练工程,而训练的就是利用权值和阈值的激活函数计算输出的。权值与输入相乘,经过激活函数计算出的值与阈值比较,达到阈值的可输出,不满足的则返回继续训练。因此可以提高识别率。
④ 息差环比提升10BP。BP是什么意思
季度招行的净息差和净利差分别为2.31%和2.24%,分别较08年第四季度收窄66 和65 个bp。 尽管手续费及佣金净收入环比同比均出现下降,但在公允价值变动
⑤ 如何提高pb神经网络分类的准确率
要想提高BP神经网络分类的准确率,关键在于提高网络性能,使网络能够反映数据的内部非线性规律。一般有以下几种措施:
保证学习样本质量。网络的输出结果质量不可能超出原始训练数据的质量,一定要保证样本准确、典型、规模足够大。
选定合适的输入向量方案。输入向量的配置方案不是固定的,可以添加自变量,增加因素。
选定适当的隐层节点数。过少学习能力不足,过多可能过拟合并且学习较慢。
调整参数,如学习率、学习目标等。
与其他算法结合进行改进。如带动量项的BP算法、与GA算法融合的GA-BP算法等。
效果不理想时,可考虑增加隐层数量。
⑥ 在网上找人写商业计划书,优化BP靠谱吗
写BP的目的,除了做项 目的梳理和规划,最核心的点还是为了融资,所以建议,最好是找资本公司去撰写商业计划书,除了对项目能有更好的理解,同时也有资本方面的资源,提高融资成功的几率。创投名堂可以的,也做FA,好像也有帮助企业写商业计划书。
⑦ BP神经网络误差如何提高
你好,误差大,第一步需要尝试的是做归一化处理。有线性归一化,有对数函数归一化等等,这个你可以去网上搜索数据归一化方法,有相关的代码,应该。
第二部需要做出的改动是隐层节点数量,如果节点数量太多,那么结果的随机性就会很大,如果太少,那么复杂数据的规律计算不出来。多少层节点最合适,这个目前除了一个一个试没有更好的办法。但是你会发现每一个相同的结构计算出的结果却不尽相同,这个时候就需要考虑后续的问题。
第三步尝试,变换transfer function。麻烦你查查字典,因为我不是用中文学的神经网络。我姑且翻译成传输函数。传输函数在matlab中内建了3中 pureline logsig tansig。分别有不同的应用范围。因为没看到你的数据,我也不清楚具体应该推荐你用哪一种。不过你可以去网上搜索一下三种传输函数的特点。
如果有用请给“采纳”谢谢。
⑧ 如何提高BP神经网络模型的预测精度
直接调用归一化函数就可以啦,不会的话看一下这个帖子吧:遗传算法优化BP神经网络的案例(matlab代码分享)
http://www.ilovematlab.cn/forum. ... &fromuid=679292
⑨ 求网络推广良策
针对全国的吧,建议在网站做好之后先做关键字竞价推广,后期再做SEO优化。
自己不会的话就请专业的网络公司做吧