Ⅰ 数据分析师需要学习哪里内容
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。
所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。
对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。
4、业务理解
业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。
对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。
对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。
4、逻辑思维
这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。
对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。
对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
5、数据可视化
数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。
对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。
对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。
6、协调沟通
对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。
7、快速学习
无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。
快速学习非常重要,只有快速进入这一行业,才能抢占先机,获得更多的经验和机会。如果你完全零基础想要尽快进入数据分析行业,选择一家专业的大数据培训机构是个不错的选择。缩短学习周期,提高学习效率,时间即金钱!
Ⅱ 零基础可以培训大数据分析师吗会不会很难
随着大数据的大热,或者在大数据的影响下,很多企业开始真正重视数据,真正期望从数据中挖掘价值。甚至很多企业已经把数据作为取得竞争优势的战略。而数据真正价值的实现,不管计算效率,存储等发展的多快。一定需要“分析师”,可以说是数据分析师既是建造“数据大厦”的总体设计师,也是建造“数据大厦”的工人。
数据分析师最为稀缺的人才,相信未来10内一定是最为朝阳行业之一。所以现在很多朋友希望转型做数据分析师,很多毕业的同学也准备从事数据分析师。但很多都不知道成为一名分析师真正需要什么?
要跨入数据分析师,也许很多时候你只能从“工人”开始做成(这意味着在很大长一段时间内,你的工作内容可能比较枯燥,可能做的都是比较没有“技术”含量的活),慢慢的当你成为“熟练工”同时随着行业相关知识和各种技能的积累,慢慢你也会走上“数据设计师”之路。开始从事“高大上”或者更有技术含量的工作。
一、至少花三个月掌握技术
“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种 。我觉得至少你要花3个月时间来学习一些最基础的知识。
1、花1个月学习数据库知识。
2、花1-2个月学习基础的统计学知识。
3、花1个月学习点linux的知识。
4、花1个月去学习最基础的数据挖掘模型:
5、花1个月掌握一门基础的挖掘软件的操作。
分析师一定要有持续学习的态度,所以在后续 工作中一定要保持持续学习的态度哦。坚持学习各类知识,不仅仅是技能层面的。
二、选择感兴趣的行业
如果你已经工作,选择本行业或者相关行来。这样你在行业经验,业务知识你是有优势的。因为你比较清楚业务的“痛点”
从而你也就相对清楚应该给业务提供什么样的数据。
如果你是学生,分析师一下自己的兴趣,结合现在比较热门的行业(指数据在这个行业也是比较热)。
通过互联网学习,聊这个行业的商业模式,数据内容,分析点。有机会可以去参加一些同行的沙龙或者分享,清楚的了解这个行业的数据分析师或者同行平时都在干什么 。
对比自己当面的知识储备,更有针对性的补充知识。和在学校的同学共勉一句话:“在学校学的东西都是有用的,只是学校没有告诉你怎么用!”
三、开始寻找机会
对于跨行业转入的同学,当你准备好上述内容的时候。开始找个机会:
1、内部转岗
2、选择中,小型公司。先入门,再修行。
Ⅲ 想成为数据分析师学习流程是怎样的
第1本《谁说菜鸟不会数据分析入门篇》
很有趣的数据分析书!基本看过就能明白,以小说的形式讲解,很有代入感。包含了数据分析的结构化思维、数据处理技巧、数据展现的技术,很能帮我们提升职场竞争能力。找不到工作的,学好了它,自然没问题。
第2本《拯救你的Excel数据的分析、处理、展示(动画版)》
一本用手机看的Excel操作书,大部分例子都配置了二维码,手机扫扫就能看,基本上可以躺着把书学了。所有数据的分析、处理也都带了职场范例(有会计、HR、销售场景),很贴合实际。拯救我们小白的Excel,职场加薪不是梦想!
第3本《Excel图表之道:如何制作专业有效的商务图表》
职场大牛的书,教我们做图表的,好看到不能再好看。可以设计和制作达到杂志级质量的、专业有效的商务图表。相信平时我们很难做到吧,看了你就知道,也许一切没那么难。
第4本《绝了!Excel可以这样用:数据分析经典案例实战图表书》
挺好的一个系列,都是Excle常用的技巧,适合销售和HR。也是职场故事,很接地气,带视频的,全都是Excel数据分析的常用理念和方法。
第5本《深入浅出数据分析》
深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。
第6本《MySQL必知必会》
如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的章节即可。网络上大部分MySQL都是偏DBA的。
第7本《深入浅出统计学》
大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。
第8本《网站分析实战》
互联网不再是网站的天下,但是移动端依旧有Web,我们在朋友圈看到的所有H5活动、第三方内容等,都是依托网页实现。网站的数据分析依旧有存在空间,网站的数据指标还是能够指导我们运营!
第9本《深入浅出Python》
还是深入浅出系列,完全适合零基础的新人。需要注意的是,编程学习不同于其他知识,如果计算机基础不稳固,在使用中会遇到各类问题。知其然不知其所以然!
第10本《Python学习手册》
对于拥有编程基础的人,这本书系无巨细的有些啰嗦,不过对新人,可以避免不必要的坑。把它当作一本工具文档吧,当遇到不理解的内容随时翻阅。
第11本《利用Python进行数据分析》
这本书是你学习python不二之选,对着书,着重学习numpy,pandas两个包!每段代码都敲打一遍,千万行的数据清洗基本不会有大问题了。
第12本《R语言实战》
R语言的入门书籍,从数据读取到各类统计函数的使用。虽然没有涉及机器学习,依靠这本书入门R是绰绰有余了。
第13本《统计学:从数据到结论》
这本书是将R语言和统计学结合的教材,可以利用这本书再复习一遍统计知识。
第14本《深入浅出SQL》
带你进入SQL语言的心脏地带,从使用INSERT和SELECT这些基本的查询语法到使用子查询(subquery)、连接(join)和事务(transaction)这样的核心技术来操作数据库。到读完《深入浅出SQL》之时,你将不仅能够理解高效数据库设计和创建,还能像一个专家那样查询、归一(normalizing)和联接数据。你将成为数据的真正主人。
第15本《数据挖掘导论》
这本书绝对是一本良心教材,拿到手从第一章开始阅读,能看多少就看多少。但是要尽量多看点,因为此书你可能要看一辈子的~~
第16本《算法导论中文版》
本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。
上面的书籍都是PDF版
视频教材的有:
Python入门教程完整版(懂中文就能学会)资料
Python入门教程完整版(懂中文就能学会)视频
Mysql从入门到精通全套视频教程
8天深入理解python教程
大数据Hadoop视频教程,从入门到精通
Python就业班
Python标准库(中文版)
数学建模0基础从入门到精通,全套资源
0基础Python实战-四周实现爬虫系统
麦子学院招牌课程[明星python编程视频VIP教程][200G](价值9000元)
从零基础到数据分析师,帮你拿到年薪50万!
炜心:xccx158
Ⅳ 大数据分析师 应该要学什么知识
大数据分析师应该要学的知识有,统计概率理论基础,软件操作结合分析模型进行实际运用,数据挖掘或者数据分析方向性选择,数据分析业务应用。
1、统计概率理论基础
这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。
2、软件操作结合分析模型进行实际运用
关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
3、数据挖掘或者数据分析方向性选择
其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别,关于数据挖掘也涉及到许多模型算法,如:关联法则、神经网络、决策树、遗传算法、可视技术等。
4、数据分析业务应用
这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要。
(4)数据分析师网络培训扩展阅读
分析工作内容
1、搜索引擎分析师(Search Engine Optimization Strategy Analyst,简称SEO分析师)是一项新兴信息技术职业,主要关注搜索引擎动态,修建网站,拓展网络营销渠道,网站内部优化,流量数据分析,策划外链执行方案,负责竞价推广。
2、SEO分析师需要精通商业搜索引擎相关知识与市场运作。通过编程,HTML,CSS,JavaScript,MicrosoftASP.NET,Perl,PHP,Python等建立网站进行各种以用户体验为主同时带给公司盈利但可能失败的项目尝试。
Ⅳ 数据分析师培训,什么人适合学数据分析
数据分析行业的大火以及较高的薪酬待遇,让很多在校大学生或职业遭遇瓶颈的人士开始蠢蠢欲动,想学习数据分析从而进入数据分析行列。但 有一个很困惑的问题就是:自己选择或学习的专业似乎和数据分析没什么交集,这个时候选择数据分析师这条道路会不会很艰难?担心自己的专业跟不上数据分析的学习进度,也担心自己的能力是否符合数据分析技能的要求。
其实,讲真的。虽然数据分析这个行业有着天然的专业鄙视链(文理科的逻辑思维功底、编程语言接受程度上以及数理统计基础实实在在的存在差别,这也是甲方更信赖理工科出身的重要原因,因为社科或文艺类专业,很少有学校会严格地按照数理逻辑去制定学生的课程培养计划),但是并不代表文科生没有任何机会,因为大学以前,其实我们都没正式接触过编程或统计学,大学本科更多的是提升一个人的思维、而不是过硬的专研能力。所以文科专业的朋友,兴趣和决定也是重要因素,不能单单凭借客观的专业背景就否定自己。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。
Ⅵ cda数据分析师就业班怎么样
我有个同学在这里培训的,当时培训的时候,一个班级大约200多人的样子,分现场和远程学习,远程便宜。如果是应届生手头不宽裕建议选择远程的CDA数据分析师也可以,反正老师都是一样的。
Ⅶ 数据分析师要学什么
数据分析师要学:数学知识、分析工具、编程语言。
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
Ⅷ 如何自学成为数据分析师
数据分析师的基本工作流程:
1.定义问题
确定需要的问题,以及想得出的结论。需要考虑的选项有很多,要根据所在业务去判断。常见的有:变化趋势、用户画像、影响因素、历史数据等。
2.数据获取
数据获取的方式有很多种:
一是直接从企业数据库调取,需要SQL技能去完成数据提取等的数据库管理工作。
二是获取公开数据,政府、企业、统计局等机构有。
三是通过Python编写网页爬虫。
3.数据预处理
对残缺、重复等异常数据进行清洗。
4.数据分析与建模
这个部分需要了解基本的统计分析方法、数据挖掘算法,了解不同统计方法适用的场景和适合的问题。
5.数据可视化和分析报告撰写
学习一款可视化工具,将数据通过可视化最直观的展现出来。
数据分析入门需要掌握的技能有:
1. SQL(数据库):
怎么从数据库取数据?怎么取到自己想要的特定的数据?等这些问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能。
2. excel
分析师更多的时候是在分析数据,分析数据时需要把数据放到一个文件里,就是excel。
熟练excel常用公式,学会做数据透视表,什么数据画什么图等。
3.Python或者R的基础:
必备项,也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。
4.学习一个可视化工具
如果你想往更高层次发展,上面的东西顶多只占20%,剩下的80%则是业务理解能力,目标拆解能力,根据数据需求更多新技能的学习能力。
Ⅸ 想考大数据分析师应该学什么
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则
6.需要有一定的计算机,系统,编程能力。dmer 的熟练使用。