导航:首页 > 电商促销 > 电子商务智能推荐系统的研究

电子商务智能推荐系统的研究

发布时间:2021-10-04 00:34:30

⑴ 推荐系统的研究主要包括哪些方面


荐系统的研究主要包括以下几个方面:
(1)用户信息获取和建模。
早期的推荐系统只需获取简单的用户信息,随着推荐系统
发展,
推荐系统由简单的信息获取转变为和用户交互的系统,
需要考虑用户多兴趣和用户兴
趣转变的情况,将数据挖掘应用到用户信息获取中,挖掘用户的隐性需求。
(2)推荐算法研究。
要实现被顾客接受和认可的个性化推荐,设计准确、高效率的个
性化推荐算法是核心。基于内容的推荐和协同过滤是最主要的两种。为了克服各自的缺点,
可以将各种推荐方法混合使用,以提高推荐精度和覆盖率。同时,信息获取和人工智能,以
及模糊推荐等相关领域的引入扩宽了推荐算法的思路。
(3)推荐系统的评价问题。
要使推荐系统为广大用户所接受,必须对推荐系统作出客
观综合的评价。
推荐结果的准确性和可信性是非常重要的两个方面。
如何对推荐结果的准确
性进行判定,
如何把推荐结果展示给用户以及如何获取用户对推荐结果的评价都是需要深入
研究的问题。
(4)
推荐系统的应用和社会影响研究。
需要建立推荐系统在其他应用领域的应用框架,
研究如何与企业其它信息系统的集成。

⑵ 什么是电子商务推荐系统

随着互联网的普及抄和电子商务的发展,电子商务系统在为用户提供越来越多选择的同时,其结构也变得更加复杂,用户经常会迷失在大量的商品信息空间中,无法顺利找到自己需要的商品。电子商务推荐系统直接与用户交互,模拟商店销售人员向用户提供商品推荐,帮助用户找到所需商品,从而顺利完成购买过程。在日趋激烈的竞争环境下,电子商务推荐系统能有效保留用户、防止用户流失,提高电子商务系统的销售。
推荐系统在电子商务系统中具有良好的发展和应用前景,逐渐成为电子商务IT技术的一个重要研究内容,得到越了来越多研究者的关注。
电子商务推荐系统在理论和实践中都得到了很大发展。但是随着电子商务系统规模的进一步扩大,电子商务推荐系统也面临一系列挑战。针对电子商务推荐系统面临的主要挑战,本文对电子商务推荐系统中推荐算法设计以及推荐系统体系结构等关键技术进行了有益的探索和研究。本文的研究内容主要包括电子商务推荐系统推荐质量研究,电子商务推荐系统实时性研究,基于Web挖掘的推荐系统研究以及电子商务推荐系统体系结构研究

⑶ 电子商务推荐系统发展趋势是怎么样

电子商务模式的发展趋势及方向: 1,移动购物。 至2014年年底,手机用户已经达到了五亿,而PC用户是5.9亿,而手机的渗透率增速是远大于PC的渗透率的。也就是说在2017年,手机用户将超过PC用户,也就是说电子商务将来的主战场不是在PC,而是在移动设备上。而移动用户有很多的特点,首先购买的频次更高、更零碎,购买的高峰不是在白天,是在晚上和周末、节假日。而移动购物将会革PC电子商务的命,我们要做好准备,我们要迎接这场新的革命。而做好移动购物,不能简简单单的把PC电子商务搬到移动上面,而要充分的利用这种移动设备的特征,比如说它的扫描特征、图象、语音识别特征、感应特征、地理化、GPS的特征,这些功能可以真正的把移动带到千家万户。 2,平台化。 目前大的电商都开始有自己的平台,其实这个道理很清楚,就是因为这是最充分利用自己的流量、自己的商品和服务最大效益化的一个过程,因为有平台,可以利用全社会的资源弥补自己商品的丰富度,增加自己商品的丰富度,增加自己的服务和地理覆盖。 3,电子商务将向三四五线城市渗透。 一方面来源于移动设备继续的渗透,很多三四五线城市接触互联网是靠手机、Pad来上网的,而且这些城市首先经济收入提高,再加上本地的购物不便,加上商品可获得性很差,加上零售比先进国家落后。 随着一二线城市网购渗透率接近饱和,电商城镇化布局将成为电商企业们发展的重点,三四线城市、乡镇等地区将成为电商“渠道下沉”的主战场,同时电商在三四线欠发达地区可以更大的发挥其优势,缩小三四线城市、乡镇与一二线城市的消费差别。阿里在发展菜鸟物流,不断辐射三四线城市;京东IPO申请的融资金额大约为15亿美元到19亿美元之间,但是京东在招股书中表示,将要有10到12亿美元用于电商基础设施的建设,似乎两大巨头都将重点放在了三四线城市。事实上,谁先抢占了三四线城市,谁将在未来的竞争中占据更大的优势。 4,物联网。 随着可穿戴设备和RFID的发展,将来的芯片可以植入在皮肤里面,可以植入在衣服里面,可以在任何的物品里面,任何物品状态的变化可以引起其他相关物品的状态变化。你可以想象,如果你放一个牛奶放进你的冰箱,进冰箱的时候自动扫描,自动的知道这个保质期,知道什么时候放进去,知道你的用量,当你要完的时候,马上可以自动下订单,这个订单作为商家接到订单马上给你送货,刚好下订单可能又会触发电子商务,从供应商那里下订单,而那个订单触发生产,也就是说所有的零售、物流和最后的生产可以全部结合起来。 5,社交购物。 社交购物可以让大家在社交网络上面更加精准的去为顾客营销,更个性化的为顾客服务。 6,O2O。 比如沃尔马在上海建了一个社区的服务点,那有三个功能,第一是集货的区域,由那个地方集散到顾客手中;第二那个地方是顾客取货的点;第三个那个地方是营销的点,展示我们的商品,为社区的居民进行团购,帮助他们上网,帮助他们使用手机购物,起了三个作用。但很感叹的是什么呢?传统零售在往线上走,电子商务往线下走,最后一定是O2O的融合,为顾客提供多渠道、更大的便利。 7,云服务和电子商务解决方案。 大量的电子商务的企业发展了很多的能力,这些能力包括物流的能力、营销的能力、系统的能力、各种各样为商家为供应商为合作伙伴提供电子商务解决方案的能力,这些能力希望最大效率的发挥作用。比如说我们推出一个SBY,这里面有营销服务、数据服务、平台服务、物流服务。刚刚又推出了金融服务,还会有更多的服务。也就是说我们把自己研发出来的,为电子商务本身提供的能力,提供给全社会。 8,大数据的应用。, 电子商务的盈利模式逐渐进一步升级。低级的,盈利是靠商品的差价。下一个能力是为供应商商品做营销,而做到返点,营销所带来的盈利。下一个盈利方面是靠平台,有了流量、顾客,希望收取平台使用费和佣金提高自己的盈利能力。下一个能力是金融能力,也就是说为我们的供应商、商家提供各种各样的金融服务,得到的能力。下一个能力是数据,也就是我们有大量电子商务顾客行为数据,利用这个数据充分产生它的价值,这个能力也是为电子商务盈利的最高层次。而数据,我们知道也是一个逐渐升级的过程,原始的数据是零散的,价值非常小,而这些数据经过过滤、分析而成为了信息,而在信息的基础之上建立模型,来支持决策,成了我们的知识,而这些知识能够做预测,能够举一反三,能够悟出道理,成了我们的智慧。所以在整个升级,数据升级,和我们数据价值的升级,我们从中就充分的体现这个大数据的价值。 9,精准化营销和个性化服务。 精准化营销和个性化服务这个需求大家都是有的,希望这个网站是为我而设的,希望所有为我推荐的刚好是我要的,以后的营销不再是大众化营销,而是窄众营销。每个人都希望最大效率的应用这个营销的渠道和营销的工具化是窄众营销,每个人精准化的知道他的需求,为他提供个性化的营销和服务。 10,互联网金融。 互联网这个平台可以说上面有演员、有观众,有很多的戏,这个戏就是这里面的一些内容,也就是说含有保险、基金、小贷,有各种各样的服务,是戏的内容。演员就是那些银行、金融机构、保险公司等等。观众就是所有的大宗顾客,还有比如说我们的商家、供应商、合作伙伴。这个平台最好的为所有的大众服务,所有的这台戏上面的观众服务,也就是这个平台的作用。

⑷ 电子商务个性化推荐系统和电子商务系统什么关系

电子商务中的推荐系统是利用数据挖掘等技术,分析访问者在电子商务网站的访问行为,产生能帮助访问顾客访问感兴趣的产品信息的推荐结果.

电子商务系统规划与建设本来就包括数据库系统的建立,技术含量不是特高的电子商务推荐系统就是在原有的数据库系统上新添的利用数据挖掘技术对动态的客户访问所返回的数据加以分析并调出客户可能感兴趣的的产品目录。

看这里----就知道它只是在原有的系统上加了些技术模块
根据系统功能设计的要求以及功能模块的划分,数据库的设计相对较简单。除用于销售
商品的电子商务网站中所必须的基本数据库表,如商品信息、用户信息、网站信息等外,还
应包括:用于初始化数据设置的参数表、仅对有评分商品推荐起作用的顾客商品评分表、顾
客商品购买记录表、商品聚类表、顾客聚类表、商品推荐表

专业上的问题你还真上网络知道来问。你肯定是研究生。看下我的链接http://www.autocontrol.com.cn/magazine/pdf/08.08.03/29.pdf,有很全的资料分析--网上的

⑸ 基于电子商务平台的推荐系统设计与实现

1、安全性 2、稳定性 3、是否兼容服务器 4、数据库设计要能承受 5、知道网站是B2B、B2C或者是B2G 6、方便性 7、处理速度快 8、客户服务 9、意见反馈 我个人意见是那么多。

⑹ 对网上购物电子商务系统设计的主要研究(设计)方法论述

这个论述你看看吧
也许对你有参考价值

基于ASP技术的电子商务网站的设计

【摘要】 随着Internet技术的发展,人们的日常生活已经离不开网络。未来社会人们的生活和工作将越来越依赖于数字技术的发展,越来越数字化、网络化、电子化、虚拟化。电子商务也随着网络的发展日益和人们的生活贴近。本设计尝试用ASP在网络上架构一个动态的电子商务网站,以使每一位顾客不用出门在家里就能够通过上网来轻松购物。在本设计中,我主要完成了后台功能的实现,实现了登录功能,图书管理,图书分类管理,订单管理,用户管理等功能。
本文中所做的主要工作如下:
(1)简单介绍了电子商务,分析了电子商务的现状;
(2)介绍了IIS+ASP系统的一般原理;
(3)阐述整个系统的系统结构及工作原理;分析了系统实现中的特殊性、难点和重点;
(4)分析并解决实现中的若干技术问题;
【关键词】 Internet ASP 电子商务 网上书店

⑺ 求有关电子商务系统推荐技术的应用研究论文

[摘 要] 随着电子商务的不断深入发展,电子商务推荐系统的应用更加广泛。文章主要介绍了目前应用较广的几种电子商务推荐系统中的推荐技术,并对这几种推荐技术存在的问题进行了分析。
[关键词] 电子商务 推荐系统 推荐技术

一、引言
随着网络的广泛普及,电子商务对传统的商贸活动产生了革命性的变化,产生从以商品为中心到以客户为中心的商业模式的转变。新的商业环境在为企业提供新的商机的同时,也对企业提出了新的挑战。围绕客户进行服务,为客户提供所需要的商品,所以对每个客户提供个性化的服务已经成为必要。而电子商务推荐系统成为解决问题的重要途径。本文研究了电子商务推荐系统中的各类推荐技术。
二、电子商务推荐系统
电子商务推荐系统定义为:利用电子商务网站向用户提供商品信息和建议,帮助客户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。它是一个基于客户网上购物的以商品为推荐对象的个性化推荐系统,为客户推荐符合其兴趣爱好的商品。分析客户的消费偏向,向每个客户具有针对性地推荐的产品,帮助客户从庞大的商品目录中挑选真正适合自己需要的商品。电子商务推荐系统在帮助了客户的同时也提高了客户对商务活动的满意度,从而换来对电子商务站点的进一步支持。
电子商务推荐系统主要起到了三个方面的作用:首先,极大地增加了客户,可以把网站的浏览者转变为购买者,提高主动性;其次,可以提高网站相关系列产品的连带销售能力;最后,可以提高、维持客户对网站的满意度和信任度。
电子商务推荐系统具有良好的发展和应用前景。在日趋激烈的竞争环境下,电子商务推荐系统能有效保留客户,提高电子商务网站系统能大大提高企业的销售额。成功的电子商务推荐系统将会产生巨大的经济效益和社会效应。
三、电子商务推荐技术
目前,电子商务推荐系统中使用的主要推荐技术有基于内容推荐,协同过滤推荐,基于知识推荐,基于效用推荐,基于关联规则推荐,混合推荐等等。
1.基于内容的推荐。它是信息过滤技术的延续与发展,项目或对象通过相关特征的属性来定义,系统基于商品信息, 包括商品的属性及商品之间的相关性和客户的喜好来向其推荐。基于商品属性主要是基于产品的属性特征模型推荐。
内容推荐技术分析商品的属性及其相关性可以脱机进行,因而推荐响应时间快。缺点是难以区分商品信息的品质和风格,而且不能为用户发现新的感兴趣的商品,只能发现和用户已有兴趣相似的商品。
2.协同过滤推荐。协同过滤推荐是目前研究最多、应用最广的电子商务推荐技术。它基于邻居客户的资料得到目标客户的推荐,推荐的个性化程度高。利用客户的访问信息,通过客户群的相似性进行内容推荐,不依赖于内容仅依赖于用户之间的相互推荐,避免了内容过滤的不足,保证信息推荐的质量。协同过滤推荐优点有:能为用户发现新的感兴趣的商品;不需要考虑商品的特征,任何形式的商品都可以推荐。缺点是:稀疏性问题,用户对商品的评价矩阵非常稀疏;可扩展性问题,随着系统用户和商品的增多,系统的性能会越来越低;冷启动问题,如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐。
3.基于知识的推荐。在某种程度上可以看成是一种推理技术,各个方法因所用的知识不同而有明显区别。基于知识的推荐提出了功能知识的概念。简单的说,功能知识是关于某个项目如何满足某个特定客户的知识,它能解释需要和推荐之间的关系。在基于知识的推荐看来,客户资料可以是任何能支持推理的知识结构,并非一定是用户的需要和偏好。
4.基于效用的推荐。它是根据对客户使用项目的效用进行计算的,核心问题是如何为每个客户创建效用函数,并考虑非产品属性,如提供商的可靠性和产品的可用性等。它的优点是能在效用函数中考虑非产品因素。效用函数通过交互让用户指定影响因素及其权重对于大多数用户而言是极其繁琐的事情,因而限制了该技术的应用。
5.基于关联规则的推荐系统往往利用实际交易数据作为数据源,它符合数据源的通用性要求。以关联规则为基础,把已购商品作为规则头,推荐对象作为规则体,其中关联规则的发现最关键且最耗时,但可以离线进行。其特点是实现起来比较简洁,推荐效果良好,并能动态地把客户兴趣变化反映到推荐结果中。
6.混合推荐技术。混合推荐系统整合两种或更多推荐技术以取得更好的实际效果。最常见的做法是将协同过滤推荐技术与其它某一种推荐技术相结合。例如,结合基于协同过滤和基于内容推荐这两种推荐技术,尽量利用它们的优点而避免其缺点,提高推荐系统的性能和推荐质量。比如,为了克服协同过滤的稀疏性问题,可以利用用户浏览过的商品预期用户对其他商品的评价,这样可以增加商品评价的密度,利用这些评价再进行协同过滤,从而提高协同过滤的性能。
四、总结
电子商务推荐系统,一方面有助于电子商务网站内容和结构自适应性的实现,另一方面在帮助客户快速定位感兴趣的商品的同时也为企业实现了增值。电子商务推荐系统作为有利的分析工具和促销手段,已成为电子商务网站的竞争工具,必将获得广泛的应用和发展。本文对电子商务推荐系统进行了介绍,并对推荐技术进行了概述。目前国内的电子商务网站在这方面的实践处在快速发展的阶段,因此还需要继续研究出更智能、更优化的电子商务推荐技术。
参考文献:
[1]梁 英:电子商务个性化推荐技术研究[J].商场现代化,2007,26
[2]邓晓辉 漆 强:浅析电子商务推荐系统[J].企业经济,2007,08

⑻ 什么是电子商务推荐系统

我找到了两个介绍,不知道能不能帮上你的忙。(1) http://cache..com/c?word=%B5%E7%D7%D3%3B%C9%CC%CE%F1%3B%CD%C6%BC%F6%3B%CF%B5%CD%B3&url=http%3A//203%2E64%2E135%2E94%3A9212/slides/reputation/E%2Dcommerce%2520Recommendation%2520Applications%2Eppt&b=0&a=42&user=
(2) http://cache..com/c?word=%B5%E7%D7%D3%3B%C9%CC%CE%F1%3B%CD%C6%BC%F6%3B%CF%B5%CD%B3&url=http%3A//www%2Edmgroup%2Eorg%2Ecn/pptdown050322/etuijian%2Eppt&b=0&a=40&user=

⑼ 电子商务推荐系统现在有什么问题

电子商务推荐系统定义为:利用电子商务网站向用户提供商品信息和建议,帮助客户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。它是一个基于客户网上购物的以商品为推荐对象的个性化推荐系统,为客户推荐符合其兴趣爱好的商品。分析客户的消费偏向,向每个客户具有针对性地推荐的产品,帮助客户从庞大的商品目录中挑选真正适合自己需要的商品。电子商务推荐系统在帮助了客户的同时也提高了客户对商务活动的满意度,从而换来对电子商务站点的进一步支持。
电子商务推荐系统主要起到了三个方面的作用:首先,极大地增加了客户,可以把网站的浏览者转变为购买者,提高主动性;其次,可以提高网站相关系列产品的连带销售能力;最后,可以提高、维持客户对网站的满意度和信任度。
电子商务推荐系统具有良好的发展和应用前景。在日趋激烈的竞争环境下,电子商务推荐系统能有效保留客户,提高电子商务网站系统能大大提高企业的销售额。成功的电子商务推荐系统将会产生巨大的经济效益和社会效应。
电子商务推荐技术
目前,电子商务推荐系统中使用的主要推荐技术有基于内容推荐,协同过滤推荐,基于知识推荐,基于效用推荐,基于关联规则推荐,混合推荐等等。
1.基于内容的推荐。它是信息过滤技术的延续与发展,项目或对象通过相关特征的属性来定义,系统基于商品信息, 包括商品的属性及商品之间的相关性和客户的喜好来向其推荐。基于商品属性主要是基于产品的属性特征模型推荐。
内容推荐技术分析商品的属性及其相关性可以脱机进行,因而推荐响应时间快。缺点是难以区分商品信息的品质和风格,而且不能为用户发现新的感兴趣的商品,只能发现和用户已有兴趣相似的商品。
2.协同过滤推荐。协同过滤推荐是目前研究最多、应用最广的电子商务推荐技术。它基于邻居客户的资料得到目标客户的推荐,推荐的个性化程度高。利用客户的访问信息,通过客户群的相似性进行内容推荐,不依赖于内容仅依赖于用户之间的相互推荐,避免了内容过滤的不足,保证信息推荐的质量。协同过滤推荐优点有:能为用户发现新的感兴趣的商品;不需要考虑商品的特征,任何形式的商品都可以推荐。缺点是:稀疏性问题,用户对商品的评价矩阵非常稀疏;可扩展性问题,随着系统用户和商品的增多,系统的性能会越来越低;冷启动问题,如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐。
3.基于知识的推荐。在某种程度上可以看成是一种推理技术,各个方法因所用的知识不同而有明显区别。基于知识的推荐提出了功能知识的概念。简单的说,功能知识是关于某个项目如何满足某个特定客户的知识,它能解释需要和推荐之间的关系。在基于知识的推荐看来,客户资料可以是任何能支持推理的知识结构,并非一定是用户的需要和偏好。
4.基于效用的推荐。它是根据对客户使用项目的效用进行计算的,核心问题是如何为每个客户创建效用函数,并考虑非产品属性,如提供商的可靠性和产品的可用性等。它的优点是能在效用函数中考虑非产品因素。效用函数通过交互让用户指定影响因素及其权重对于大多数用户而言是极其繁琐的事情,因而限制了该技术的应用。
5.基于关联规则的推荐系统往往利用实际交易数据作为数据源,它符合数据源的通用性要求。以关联规则为基础,把已购商品作为规则头,推荐对象作为规则体,其中关联规则的发现最关键且最耗时,但可以离线进行。其特点是实现起来比较简洁,推荐效果良好,并能动态地把客户兴趣变化反映到推荐结果中。
6.混合推荐技术。混合推荐系统整合两种或更多推荐技术以取得更好的实际效果。最常见的做法是将协同过滤推荐技术与其它某一种推荐技术相结合。例如,结合基于协同过滤和基于内容推荐这两种推荐技术,尽量利用它们的优点而避免其缺点,提高推荐系统的性能和推荐质量。比如,为了克服协同过滤的稀疏性问题,可以利用用户浏览过的商品预期用户对其他商品的评价,这样可以增加商品评价的密度,利用这些评价再进行协同过滤,从而提高协同过滤的性能。
电子商务推荐系统,一方面有助于电子商务网站内容和结构自适应性的实现,另一方面在帮助客户快速定位感兴趣的商品的同时也为企业实现了增值。电子商务推荐系统作为有利的分析工具和促销手段,已成为电子商务网站的竞争工具,必将获得广泛的应用和发展。本文对电子商务推荐系统进行了介绍,并对推荐技术进行了概述。目前国内的电子商务网站在这方面的实践处在快速发展的阶段,因此还需要继续研究出更智能、更优化的电子商务推荐技术。

⑽ 求对电子商务推荐系统的研究与分析的论文和开题报告

可以去淘宝的《翰林书店》店铺,店主应该能帮你下载到这论文

阅读全文

与电子商务智能推荐系统的研究相关的资料

热点内容
凡客诚品校园推广方案 浏览:824
监管平台促销活动 浏览:898
义乌潘朵电子商务 浏览:240
火锅店夏季营销方案 浏览:760
电子商务人格特质 浏览:141
幼儿园应急抢救培训方案 浏览:361
广东电子商务员分章练习 浏览:754
中小学教师信息技术应用能力培训方案 浏览:132
驻村帮帮扶干部培训方案 浏览:690
6月教育培训招生活动方案 浏览:972
电子商务发展趋势总结 浏览:540
2019全年营销方案 浏览:146
小学师德师风培训方案 浏览:614
韩都衣舍的电子商务策划方案 浏览:400
2019年设备安全月策划方案 浏览:257
公益老人活动策划方案 浏览:592
北京易商旅电子商务有限公司怎么样 浏览:765
2017年有哪些促销活动 浏览:971
全民瑜伽活动策划方案 浏览:995
促销活动中抓奖活动 浏览:438