1. 知識圖譜是什麼有哪些應用價值
【1】能用html+css把頁面做出來,能用js實現動態效果。
【2】在1的基礎上保證瀏覽器兼容性。
【3】在2的基礎上開始出現代碼潔癖,代碼會逐漸趨向於簡潔高效
【4】在3的基礎上開始關注語義性、可用性和可重用性
【5】在4的基礎上開始關注頁面性能
【6】在5的基礎上開始費勁腦汁的去尋思怎麼能把開發效率也提升上來
2. 什麼是知識圖譜
知識圖譜(Knowledge Graph),在圖書情報界稱為知識域可視化或知識領域映射地圖,是顯示知識發展進程與結構關系的一系列各種不同的圖形,用可視化技術描述知識資源及其載體,挖掘、分析、構建、繪制和顯示知識及它們之間的相互聯系。
知識圖譜,是通過將應用數學、圖形學、信息可視化技術、信息科學等學科的理論與方法與計量學引文分析、共現分析等方法結合,並利用可視化的圖譜形象地展示學科的核心結構、發展歷史、前沿領域以及整體知識架構達到多學科融合目的的現代理論。
知識圖譜,它能為學科研究提供切實的、有價值的參考。
3. 消防宣傳知識圖片
消防宣傳知識圖片你可在網路上搜尋有很多的類型
4. 知識圖譜有什麼用處
知識圖譜 (Knowledge Graph) 是當前的研究熱點。自從2012年Google推出自己第一版知識圖譜以來,它在學術界和工業界掀起了一股熱潮。各大互聯網企業在之後的短短一年內紛紛推出了自己的知識圖譜產品以作為回應。比如在國內,互聯網巨頭網路和搜狗分別推出」知心「和」知立方」來改進其搜索質量。那麼與這些傳統的互聯網公司相比,對處於當今風口浪尖上的行業 - 互聯網金融, 知識圖譜可以有哪方面的應用呢?
目錄
1. 什麼是知識圖譜?
2. 知識圖譜的表示
3. 知識圖譜的存儲
4. 應用
5. 挑戰
6. 結語
1. 什麼是知識圖譜?
知識圖譜本質上是語義網路,是一種基於圖的數據結構,由節點(Point)和邊(Edge)組成。在知識圖譜里,每個節點表示現實世界中存在的「實體」,每條邊為實體與實體之間的「關系」。知識圖譜是關系的最有效的表示方式。通俗地講,知識圖譜就是把所有不同種類的信息(Heterogeneous Information)連接在一起而得到的一個關系網路。知識圖譜提供了從「關系」的角度去分析問題的能力。
知識推理
推理能力是人類智能的重要特徵,使得我們可以從已有的知識中發現隱含的知識, 一般的推理往往需要一些規則的支持【3】。例如「朋友」的「朋友」,可以推理出「朋友」關系,「父親」的「父親」可以推理出「祖父」的關系。再比如張三的朋友很多也是李四的朋友,那我們可以推測張三和李四也很有可能是朋友關系。當然,這里會涉及到概率的問題。當信息量特別多的時候,怎麼把這些信息(side information)有效地與推理演算法結合在一起才是最關鍵的。常用的推理演算法包括基於邏輯(Logic) 的推理和基於分布式表示方法(Distributed Representation)的推理。隨著深度學習在人工智慧領域的地位變得越來越重要,基於分布式表示方法的推理也成為目前研究的熱點。如果有興趣可以參考一下這方面目前的工作進展【4,5,6,7】。
大數據、小樣本、構建有效的生態閉環是關鍵
雖然現在能獲取的數據量非常龐大,我們仍然面臨著小樣本問題,也就是樣本數量少。假設我們需要搭建一個基於機器學習的反欺詐評分系統,我們首先需要一些欺詐樣本。但實際上,我們能拿到的欺詐樣本數量不多,即便有幾百萬個貸款申請,最後被我們標記為欺詐的樣本很可能也就幾萬個而已。這對機器學習的建模提出了更高的挑戰。每一個欺詐樣本我們都是以很高昂的「代價」得到的。隨著時間的推移,我們必然會收集到更多的樣本,但樣本的增長空間還是有局限的。這有區別於傳統的機器學習系統,比如圖像識別,不難拿到好幾十萬甚至幾百萬的樣本。
在這種小樣本條件下,構建有效的生態閉環尤其的重要。所謂的生態閉環,指的是構建有效的自反饋系統使其能夠實時地反饋給我們的模型,並使得模型不斷地自優化從而提升准確率。為了搭建這種自學習系統,我們不僅要完善已有的數據流系統,而且要深入到各個業務線,並對相應的流程進行優化。這也是整個反欺詐環節必要的過程,我們要知道整個過程都充滿著博弈。所以我們需要不斷地通過反饋信號來調整我們的策略。
6. 結語
知識圖譜在學術界和工業界受到越來越多的關注。除了本文中所提到的應用,知識圖譜還可以應用在許可權管理,人力資源管理等不同的領域。在後續的文章中會詳細地講到這方面的應用。
參考文獻
【1】De Abreu, D., Flores, A., Palma, G., Pestana, V., Pinero, J., Queipo, J., ... & Vidal, M. E. (2013). Choosing Between Graph Databases and RDF Engines for Consuming and Mining Linked Data. In COLD.
【2】User Behavior Tutorial
【3】劉知遠 知識圖譜——機器大腦中的知識庫 第二章 知識圖譜——機器大腦中的知識庫
【4】Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs.
【5】Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Advances in Neural Information Processing Systems (pp. 926-934).
【6】Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems (pp. 2787-2795).
【7】Jenatton, R., Roux, N. L., Bordes, A., & Obozinski, G. R. (2012). A latent factor model for highly multi-relational data. In Advances in Neural Information Processing Systems(pp. 3167-3175).
5. 知識圖譜主要是做什麼的
知識圖譜本質上是一種語義網路,是基於圖的數據結構,以圖的方式存儲知識並向用戶返回經過加工和推理的知識。它由「節點」和「邊」組成,節點表示現實世界中的「實體」,邊表示實體之間的「關系」。
一般來說,知識圖譜分為通用知識圖譜和領域知識圖譜。其中,通用知識圖譜主要由各大搜索引擎公司研究,以提高搜索准確率,爭取直接給出目標答案;而領域知識圖譜可根據領域特定的情況,提供各種針對性的應用。