导航:首页 > 电商促销 > 电子商务智能推荐系统

电子商务智能推荐系统

发布时间:2022-03-09 12:52:26

㈠ 智能推荐系统有哪些特点

知情人士透露字节跳动旗下智能推荐系统“灵驹”(ByteAir)已对内部业务体系应用展开相关培训,定位是“全球领先的企业级算法服务提供商”,这是字节跳动首次把头条推荐算法当做解决方案打包出来,适配给字节跳动各个业务线以及外部企业。...
应客智能Ai电话机器人采用的是语音交互系统代替传统语音群呼,人机互答,100%真人动态为您主动挑选、发展有效客户,帮助企业解决招聘难、人力成本高等问题。不必再为员工处理操作不到位而担忧,能够在最短的时间给客户做分类,做到标准化实行,低成本处理,时时刻刻都在工作,不需要双休和年假,不需要五险一金。

电子商务推荐系统现在有什么问题

电子商务推荐系统定义为:利用电子商务网站向用户提供商品信息和建议,帮助客户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。它是一个基于客户网上购物的以商品为推荐对象的个性化推荐系统,为客户推荐符合其兴趣爱好的商品。分析客户的消费偏向,向每个客户具有针对性地推荐的产品,帮助客户从庞大的商品目录中挑选真正适合自己需要的商品。电子商务推荐系统在帮助了客户的同时也提高了客户对商务活动的满意度,从而换来对电子商务站点的进一步支持。
电子商务推荐系统主要起到了三个方面的作用:首先,极大地增加了客户,可以把网站的浏览者转变为购买者,提高主动性;其次,可以提高网站相关系列产品的连带销售能力;最后,可以提高、维持客户对网站的满意度和信任度。
电子商务推荐系统具有良好的发展和应用前景。在日趋激烈的竞争环境下,电子商务推荐系统能有效保留客户,提高电子商务网站系统能大大提高企业的销售额。成功的电子商务推荐系统将会产生巨大的经济效益和社会效应。
电子商务推荐技术
目前,电子商务推荐系统中使用的主要推荐技术有基于内容推荐,协同过滤推荐,基于知识推荐,基于效用推荐,基于关联规则推荐,混合推荐等等。
1.基于内容的推荐。它是信息过滤技术的延续与发展,项目或对象通过相关特征的属性来定义,系统基于商品信息, 包括商品的属性及商品之间的相关性和客户的喜好来向其推荐。基于商品属性主要是基于产品的属性特征模型推荐。
内容推荐技术分析商品的属性及其相关性可以脱机进行,因而推荐响应时间快。缺点是难以区分商品信息的品质和风格,而且不能为用户发现新的感兴趣的商品,只能发现和用户已有兴趣相似的商品。
2.协同过滤推荐。协同过滤推荐是目前研究最多、应用最广的电子商务推荐技术。它基于邻居客户的资料得到目标客户的推荐,推荐的个性化程度高。利用客户的访问信息,通过客户群的相似性进行内容推荐,不依赖于内容仅依赖于用户之间的相互推荐,避免了内容过滤的不足,保证信息推荐的质量。协同过滤推荐优点有:能为用户发现新的感兴趣的商品;不需要考虑商品的特征,任何形式的商品都可以推荐。缺点是:稀疏性问题,用户对商品的评价矩阵非常稀疏;可扩展性问题,随着系统用户和商品的增多,系统的性能会越来越低;冷启动问题,如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐。
3.基于知识的推荐。在某种程度上可以看成是一种推理技术,各个方法因所用的知识不同而有明显区别。基于知识的推荐提出了功能知识的概念。简单的说,功能知识是关于某个项目如何满足某个特定客户的知识,它能解释需要和推荐之间的关系。在基于知识的推荐看来,客户资料可以是任何能支持推理的知识结构,并非一定是用户的需要和偏好。
4.基于效用的推荐。它是根据对客户使用项目的效用进行计算的,核心问题是如何为每个客户创建效用函数,并考虑非产品属性,如提供商的可靠性和产品的可用性等。它的优点是能在效用函数中考虑非产品因素。效用函数通过交互让用户指定影响因素及其权重对于大多数用户而言是极其繁琐的事情,因而限制了该技术的应用。
5.基于关联规则的推荐系统往往利用实际交易数据作为数据源,它符合数据源的通用性要求。以关联规则为基础,把已购商品作为规则头,推荐对象作为规则体,其中关联规则的发现最关键且最耗时,但可以离线进行。其特点是实现起来比较简洁,推荐效果良好,并能动态地把客户兴趣变化反映到推荐结果中。
6.混合推荐技术。混合推荐系统整合两种或更多推荐技术以取得更好的实际效果。最常见的做法是将协同过滤推荐技术与其它某一种推荐技术相结合。例如,结合基于协同过滤和基于内容推荐这两种推荐技术,尽量利用它们的优点而避免其缺点,提高推荐系统的性能和推荐质量。比如,为了克服协同过滤的稀疏性问题,可以利用用户浏览过的商品预期用户对其他商品的评价,这样可以增加商品评价的密度,利用这些评价再进行协同过滤,从而提高协同过滤的性能。
电子商务推荐系统,一方面有助于电子商务网站内容和结构自适应性的实现,另一方面在帮助客户快速定位感兴趣的商品的同时也为企业实现了增值。电子商务推荐系统作为有利的分析工具和促销手段,已成为电子商务网站的竞争工具,必将获得广泛的应用和发展。本文对电子商务推荐系统进行了介绍,并对推荐技术进行了概述。目前国内的电子商务网站在这方面的实践处在快速发展的阶段,因此还需要继续研究出更智能、更优化的电子商务推荐技术。

㈢ 电子商务推荐系统发展趋势是怎么样

电子商务模式的发展趋势及方向: 1,移动购物。 至2014年年底,手机用户已经达到了五亿,而PC用户是5.9亿,而手机的渗透率增速是远大于PC的渗透率的。也就是说在2017年,手机用户将超过PC用户,也就是说电子商务将来的主战场不是在PC,而是在移动设备上。而移动用户有很多的特点,首先购买的频次更高、更零碎,购买的高峰不是在白天,是在晚上和周末、节假日。而移动购物将会革PC电子商务的命,我们要做好准备,我们要迎接这场新的革命。而做好移动购物,不能简简单单的把PC电子商务搬到移动上面,而要充分的利用这种移动设备的特征,比如说它的扫描特征、图象、语音识别特征、感应特征、地理化、GPS的特征,这些功能可以真正的把移动带到千家万户。 2,平台化。 目前大的电商都开始有自己的平台,其实这个道理很清楚,就是因为这是最充分利用自己的流量、自己的商品和服务最大效益化的一个过程,因为有平台,可以利用全社会的资源弥补自己商品的丰富度,增加自己商品的丰富度,增加自己的服务和地理覆盖。 3,电子商务将向三四五线城市渗透。 一方面来源于移动设备继续的渗透,很多三四五线城市接触互联网是靠手机、Pad来上网的,而且这些城市首先经济收入提高,再加上本地的购物不便,加上商品可获得性很差,加上零售比先进国家落后。 随着一二线城市网购渗透率接近饱和,电商城镇化布局将成为电商企业们发展的重点,三四线城市、乡镇等地区将成为电商“渠道下沉”的主战场,同时电商在三四线欠发达地区可以更大的发挥其优势,缩小三四线城市、乡镇与一二线城市的消费差别。阿里在发展菜鸟物流,不断辐射三四线城市;京东IPO申请的融资金额大约为15亿美元到19亿美元之间,但是京东在招股书中表示,将要有10到12亿美元用于电商基础设施的建设,似乎两大巨头都将重点放在了三四线城市。事实上,谁先抢占了三四线城市,谁将在未来的竞争中占据更大的优势。 4,物联网。 随着可穿戴设备和RFID的发展,将来的芯片可以植入在皮肤里面,可以植入在衣服里面,可以在任何的物品里面,任何物品状态的变化可以引起其他相关物品的状态变化。你可以想象,如果你放一个牛奶放进你的冰箱,进冰箱的时候自动扫描,自动的知道这个保质期,知道什么时候放进去,知道你的用量,当你要完的时候,马上可以自动下订单,这个订单作为商家接到订单马上给你送货,刚好下订单可能又会触发电子商务,从供应商那里下订单,而那个订单触发生产,也就是说所有的零售、物流和最后的生产可以全部结合起来。 5,社交购物。 社交购物可以让大家在社交网络上面更加精准的去为顾客营销,更个性化的为顾客服务。 6,O2O。 比如沃尔马在上海建了一个社区的服务点,那有三个功能,第一是集货的区域,由那个地方集散到顾客手中;第二那个地方是顾客取货的点;第三个那个地方是营销的点,展示我们的商品,为社区的居民进行团购,帮助他们上网,帮助他们使用手机购物,起了三个作用。但很感叹的是什么呢?传统零售在往线上走,电子商务往线下走,最后一定是O2O的融合,为顾客提供多渠道、更大的便利。 7,云服务和电子商务解决方案。 大量的电子商务的企业发展了很多的能力,这些能力包括物流的能力、营销的能力、系统的能力、各种各样为商家为供应商为合作伙伴提供电子商务解决方案的能力,这些能力希望最大效率的发挥作用。比如说我们推出一个SBY,这里面有营销服务、数据服务、平台服务、物流服务。刚刚又推出了金融服务,还会有更多的服务。也就是说我们把自己研发出来的,为电子商务本身提供的能力,提供给全社会。 8,大数据的应用。, 电子商务的盈利模式逐渐进一步升级。低级的,盈利是靠商品的差价。下一个能力是为供应商商品做营销,而做到返点,营销所带来的盈利。下一个盈利方面是靠平台,有了流量、顾客,希望收取平台使用费和佣金提高自己的盈利能力。下一个能力是金融能力,也就是说为我们的供应商、商家提供各种各样的金融服务,得到的能力。下一个能力是数据,也就是我们有大量电子商务顾客行为数据,利用这个数据充分产生它的价值,这个能力也是为电子商务盈利的最高层次。而数据,我们知道也是一个逐渐升级的过程,原始的数据是零散的,价值非常小,而这些数据经过过滤、分析而成为了信息,而在信息的基础之上建立模型,来支持决策,成了我们的知识,而这些知识能够做预测,能够举一反三,能够悟出道理,成了我们的智慧。所以在整个升级,数据升级,和我们数据价值的升级,我们从中就充分的体现这个大数据的价值。 9,精准化营销和个性化服务。 精准化营销和个性化服务这个需求大家都是有的,希望这个网站是为我而设的,希望所有为我推荐的刚好是我要的,以后的营销不再是大众化营销,而是窄众营销。每个人都希望最大效率的应用这个营销的渠道和营销的工具化是窄众营销,每个人精准化的知道他的需求,为他提供个性化的营销和服务。 10,互联网金融。 互联网这个平台可以说上面有演员、有观众,有很多的戏,这个戏就是这里面的一些内容,也就是说含有保险、基金、小贷,有各种各样的服务,是戏的内容。演员就是那些银行、金融机构、保险公司等等。观众就是所有的大宗顾客,还有比如说我们的商家、供应商、合作伙伴。这个平台最好的为所有的大众服务,所有的这台戏上面的观众服务,也就是这个平台的作用。

㈣ 求对电子商务推荐系统的研究与分析的论文和开题报告

可以去淘宝的《翰林书店》店铺,店主应该能帮你下载到这论文

㈤ 电子商务个性化推荐系统和电子商务系统什么关系

电子商务中的推荐系统是利用数据挖掘等技术,分析访问者在电子商务网站的访问行为,产生能帮助访问顾客访问感兴趣的产品信息的推荐结果.

电子商务系统规划与建设本来就包括数据库系统的建立,技术含量不是特高的电子商务推荐系统就是在原有的数据库系统上新添的利用数据挖掘技术对动态的客户访问所返回的数据加以分析并调出客户可能感兴趣的的产品目录。

看这里----就知道它只是在原有的系统上加了些技术模块
根据系统功能设计的要求以及功能模块的划分,数据库的设计相对较简单。除用于销售
商品的电子商务网站中所必须的基本数据库表,如商品信息、用户信息、网站信息等外,还
应包括:用于初始化数据设置的参数表、仅对有评分商品推荐起作用的顾客商品评分表、顾
客商品购买记录表、商品聚类表、顾客聚类表、商品推荐表

专业上的问题你还真上网络知道来问。你肯定是研究生。看下我的链接http://www.autocontrol.com.cn/magazine/pdf/08.08.03/29.pdf,有很全的资料分析--网上的

㈥ 基于电子商务平台的推荐系统设计与实现

1、安全性 2、稳定性 3、是否兼容服务器 4、数据库设计要能承受 5、知道网站是B2B、B2C或者是B2G 6、方便性 7、处理速度快 8、客户服务 9、意见反馈 我个人意见是那么多。

㈦ 谁有电商推荐系统的数据集吗,我写一个有关推荐系统的大实验需要用

电子商务:通俗来说就是企业通过网络,把线下的业务移到线上去开展,完成商品或者服务的销售交易。 大数据:指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。 近几年来,互联网产业高速发展,很多传统企业通过电子商务,开展网络营销,线上产生交易的数据量是线下无法比的,因而就产生了处理巨量资料,也就是大数据的急迫需求,解决不好,就成为电子商务发展的瓶颈。反之,大数据处理的成功发展,也促进了企业加速开展电子商务,为互联网产业的发展注入新动力。 一、大数据处理模式 在电子商务领域内,信息的大批量处理如果是以PB、EB、ZB为计量单位,则这些信息就构成了大数据。以往的计算机处理模式已经很难对这些大数据进行高效率的处理,势必会影响电子商务的总体发展。因此对大数据时代的计算机处理模式进行革新是获得电商行业整体突破的基本保证。传统的数据处理模式是数据库集群模式,大数据处理模式的基本要求是建构云计算Map Rece处理体系,使信息的分解处理和结果合并成为可能。 (一)数据库集群模式 集群模式的基本运行原理是将同一种应用程序通过不同的工作方法相互协调共同完成,在面对客户端的数据请求时,为其提供单一映像,并将这些映像通过一定的连接技术和方法与硬件系统进行连接,整体上建构一个松散耦合的集合。简单来说,数据库集群模式实现了数据库技术和集群技术的结合。数据库集群模式的运行较为平稳,具有多方面的技术优势,例如强大的靠扩展性、整体的可靠性等等。 但是在面对大数据处理时,数据库集群也表现出了一定的缺陷。这些缺陷主要包含以下方面:第一是可扩展性补不强。如果系统功能节点的硬件基础设施选择的是Pc服务器,那么将会出现系统线缆繁杂、硬件高度复杂化和架设安装难度大等问题,对其扩展性造成了一定的限制;第二是数据通信受限。目前运行高速互联网的必备条件是将 PCI插槽与主机进行连接。但是PCI的数据传送能力有限,不能满足节点间的数据通信要求;第三是提升空间小。这种空间主要是指数据库数据集的可扩展空间,在进行数据处理时如何解决系统的安全性、运算速度和可扩展性是数据库集群模式要面对的重要问题。此外,数据库集群模式还存在兼容性、可靠性、容错性、对异质条件支持能力等方面的局限性。 (二)Map Rece框架 云计算构架主要是由低端服务器进行大规模集群构成的数据处理技术,在数据存储容量和数据处理能力上具有绝对的优势。由于云计算平台在运行中的可靠性和可扩展性等功能,目前众多的大型企业或单位都将其作为web搜索和大数据分析的主要平台,如中国移动、淘宝、网易、网络等等。Map Rece框架主要包含三个方面的内容,即并行编程模型Map Rece、分布式文件系统(HDFs)、并行执行引擎。 Map Rece的设计是由google完成的,主要是进行大数据集的计算处理工作,代表了分析技术的整体发展状态。Map Rece在进行数据处理时,先将对象进行抽象化处理,使其以映射和化简操作对的形式呈现出来,其中映射部分进行数据的过滤,化简部分进行数据的聚集工作,在工作中均以良好的界面进行管理工作。对Map Rece计算过程进行分解,可以将其工作原理理解为将大数据集进行解构,解构之后的结果是形成了数量众多的小数据集,通过集群节点对这些小数据集进行分别处理,由此得出中间结果,将这些结果通过节点进行合并,就可以得出对整个大数据集的处理结果。 二、大数据时代电子商务IT技术设施的革新 IT基础设施是保证电子商务系统运行的前提,对其进行技术革新能够使其快速适应电子商务大数据时代。在后互联网技术时代,电子商务企业广泛采用的IT基础设施一般是PC服务器。随着数据信息处理规模的扩大和处理能力的要求不断增强,电子商务企业对于IT基础设施的革新正朝着小型化和集群化方向发展,与此同时,电商企业还需要不断地投入大量的人力和技术实现IT基础设施的维护、升级和更新。 (一)数据仓库的发展 从近期对电子商务信息处理数据的研究可以发现,在系统运行中出现的大数据仍在以惊人的速度发展和增长,其特点也表现为明显的分布式发展和异构性趋势。传统的数据库如具备一般数据处理功能和信息分析技术的数据库以及BI技术已经很大程度上不能满足PB级的数据量处理要求。这种大规模数据的发展促使电子商务数据仓库系统出现了非常明显的变革,也即是数据量数量级不断上调,目前已经实现了由TB向PB的迈进,并且仍呈现出爆炸性的增长态势。 根据对现今电商数据量发展状况及趋势的研究,可以发现电子商务数据仓库将会呈现以下特点:第一,未来两年电商数据仓库的最大数据量将会达到甚至超过 1OOPB,并且其增长速度也将呈现出前所未有的变化,远远超过摩尔定律;第二,对数据的分析方式实现质的变化,将从常规化分析向深度化分析转变;第三,中低端硬件组成的大规模集群硬件平台将会代替高端服务器构成的基础设施硬件支持平台,基础设施进一步向集群化发展;由于硬件系统的革新将会对并行数据库产生了重要影响,使其规模不断扩大,由此带来的成本也将逐渐增长。总体来讲,目前电子商务将会出现大规模革新的直接因素是数据量的大规模增长和深度分析的现实要求。 (二)云计算构架 云计算构架是一种针对分布式网络计算而设计的新型数据处理模式,在应用中已经表现出了良好的适应性。在网络环境中进行计算、存储、软件等在线服务时较传统构架有显著的性能提升。在目前应用于电子商务领域内的云计算构架来讲,其具备了以下特征:按需自助服务(on Demand self-service)、可度量服务(measured service)、池化资源(resource pooling)、泛化网络访问((broad network access)以及快速弹性(rapid elasticity)。 三、大数据处理对电子商务的影响 云计算的发展历史并不长,首次引入云计算技术的是淘宝网,其所有交易都是基于自建系统完成的,而阿里云也成为我国首家开展云计算供应的公司。云计算对于大数据的超强处理能力使其对电子商务的发展起到了推波助澜的作用,主要影响表现在以下方面。 (一)信息检索能力 电子商务平台虽然很大程度上改变了消费者的购物方式,但是就营销方式来说,商品数量和种类依然是影响消费者选择商家的主要因素。在电子商务领域内,商品数量和种类呈现出结构的繁杂化发展甚至是非结构化发展趋势。这些都为 IT基础设施以及信息处理技术提出了挑战,大数据处理技术由于其具备的灵活性和功能强大的检索服务使其能够引领电子商务信息处理技术的新方向。 云计算的检索服务可以根据客户的实际需求和交易习惯对大量的信息进行筛选和显示,其智能性和高效性也是传统IT基础设施多不能比拟的。此外,云平台还具有信息推荐功能,根据网上交易整体情况筛选热点商品予以展示,提高了交易的针对性和检索效率。云计算性能的优势还体现在对人类部分思维进行描述的功能上,解决了长期以来计算机信息处理不能够准确把握人类语言和知识应用的难题,使数据的处理实现了功能的深度发掘。这种技术优势表现在实际交易中就是电商平台能够对用户输入的语言进行迅速的反映,并能准确地提供用户所需耍的商品信息。这种处理过程极大地提高了信息服务的效率和质量,使用户满意度得到了很大的提升。 (二)弹性处理能力 电子商务信息处理系统的工作性质使其必须具有强大的弹性处理能力,并能够在极短的时间内做出反映以应对在系统运行中出现的各种问题。这些问题的出现并不是偶然的,而是随着用户的并发访问以及商家集体营销活动造成的大量订单信息所导致的,这些情况在当前的电商系统运行中是比较常见的,这就需要系统在面临突然增长的业务量时具有强大的扩容能力和数据的存储能力。 云计算技术的出现在理论上实现了信息的无上限存储能力以及超大规模信息处理能力,使其能够轻松地应对TB数量级的信息乃至PB数量级的信息处理。而这一功能的实施并不需要企业对硬件系统进行更换,而且能够以比较低的成本享用云计算存储处理信息服务,在此基础上对应用系统机型全方位的布局并保证了弹性处理能力的实现,使资源达到了最优化配置。 (三)信息处理安全性能 网络系统面临的最大难题是信息安全问题,保证交易安全和用户信息安全更是电商企业应时刻关注的话题。信息时代的一大特征是将信息转化为可利用的资源,甚至是直接创造经济价值的信息资本。电子商务领域内,大数据就是企业生存发展的重要资本,对于大数据的掌控能力将成为衡量企业核心竞争力的主要标志。但是大数据的出现同样给信息资源的安全带来了极大的挑战,由于其结构复杂,数量巨多,并且大多是具有敏感性的信息,很容易成为网络攻击的目标。 大数据处理技术在应对信息安全是进行了性能的全面评估,使其能够及时、精确地定位各类网络攻击或非正常现象,并将这些异常数据收集整理通过分析实施预防措施。云计算技术的安全性还体现在将安全可靠的信息转化为云服务,并将这些信息托管在云端,为用户的信息提供了专业化的信息防护措施和保密方案。 四、大数据处理的发展趋势 信息技术的发展历史并不长远,但是在每个发展阶段都会出现具有标志性的技术类型和产品。在目前,信息技术的热点以及将会对信息产业产生重大影响的无疑是云计算技术和大数据处理f司题。在电子商务环境中大数据处理将会发展出更多强大和多元的功能,具体发展趋势有以下几点。 (一)大数据处理服务和产品的多样化 目前电子商务平台的服务和产品正在向着多元化的方向发展,除了电商企业之外,政府机构、大型集团企业、行政事业单位等都加入或正在加入构建云环境下的数据处理服务平台,并且可以实现对没有充足IT能力的小型电子商务企业进行服务和产品的输出。 (二)新型的电子商务运营模式 云计算的出现不仅对IT技术设施进行了大规模和深度的革新,同时其带来的众多产品如长尾效应、经济效应、众包、个性化服务等对于经济学概念的再认知也产生了重大的影响。这些变革有助于盈利性企业的经营模式做出重大的调整,进而加快了向服务经济社会发展的步伐。随着信息技术的进一步发展和现有技术的逐步完善,传统经济模式必将会受到严重的冲击,商业模式也会随之产生整体性的变动甚至是根本性的改变,并且在变化中不断进行新技术、新方法和新思路的探索。 (三)IT设施将成为企业核心竞争力的重要组成部分 企业的核心竞争力包含多方面的内容,但可以确定的是都是对企业发展具有重大影响的因素。随着现代信息化时代的发展和信息技术在各个领域内的广泛使用,企业成产、管理、经营等模块的信息化将会对企业能否适应社会的发展以及在日益激烈的市场中保持其竞争力产生举足轻重的作用。通过对IT基础设施进行引进和革新,能在最大限度内实现资源的最佳配置,提高生产质量和效率,降低企业运营成本,提升企业的整体管理水平。特别是对于信息技术依赖程度高的电子商务企业,云计算构架和大数据处理技术的可扩展性相当可观,为海量信息的存储、整合和管理提供了安全可靠的环境,通过IT基础设施的技术优势,为突破电子商务行业的发展上限提供了可能。

㈧ 个性化推荐系统的系统简介

个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。
个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。购物网站的推荐系统为客户推荐商品,自动完成个性化选择商品的过程,满足客户的个性化需求,推荐基于:网站最热卖商品、客户所处城市、客户过去的购买行为和购买记录,推测客户将来可能的购买行为。
在电子商务时代,商家通过购物网站提供了大量的商品,客户无法一眼通过屏幕就了解所有的商品,也无法直接检查商品的质量。所以,客户需要一种电子购物助手,能根据客户自己的兴趣爱好推荐客户可能感兴趣或者满意的商品。

㈨ 什么是电子商务推荐系统

随着互联网的普及抄和电子商务的发展,电子商务系统在为用户提供越来越多选择的同时,其结构也变得更加复杂,用户经常会迷失在大量的商品信息空间中,无法顺利找到自己需要的商品。电子商务推荐系统直接与用户交互,模拟商店销售人员向用户提供商品推荐,帮助用户找到所需商品,从而顺利完成购买过程。在日趋激烈的竞争环境下,电子商务推荐系统能有效保留用户、防止用户流失,提高电子商务系统的销售。
推荐系统在电子商务系统中具有良好的发展和应用前景,逐渐成为电子商务IT技术的一个重要研究内容,得到越了来越多研究者的关注。
电子商务推荐系统在理论和实践中都得到了很大发展。但是随着电子商务系统规模的进一步扩大,电子商务推荐系统也面临一系列挑战。针对电子商务推荐系统面临的主要挑战,本文对电子商务推荐系统中推荐算法设计以及推荐系统体系结构等关键技术进行了有益的探索和研究。本文的研究内容主要包括电子商务推荐系统推荐质量研究,电子商务推荐系统实时性研究,基于Web挖掘的推荐系统研究以及电子商务推荐系统体系结构研究

㈩ 有没有方便的电商智能导购APP可以推荐下

鲸鱼生活APP现在是很有名声的呢,是与各大知 名电子商务平台合作的

阅读全文

与电子商务智能推荐系统相关的资料

热点内容
市场营销的微观环境有哪些因素 浏览:107
苏州网络营销建设 浏览:678
我国电子商务税收流失的估算规模 浏览:766
电子商务安全存在问题的解决对策 浏览:765
电子商务的快递物流 浏览:729
春季活动促销语 浏览:415
河南省民生实事培训方案 浏览:721
电子商务物流构成要素包括哪些 浏览:274
网络营销期末考试案例分析题及答案 浏览:913
节日银行营销方案 浏览:721
中医理疗养生会馆策划方案 浏览:137
舞蹈培训开业活动策划方案 浏览:654
4s店全员营销方案ppt 浏览:935
市场营销和哲学有什么联系 浏览:137
电子商务运行环境 浏览:525
生日蛋糕升级推广方案 浏览:421
零售连锁药店新员工培训方案 浏览:193
厦门市知足电子商务有限公司 浏览:440
电子商务技能大赛培训计划 浏览:95
沙龙培训方案 浏览:773