Ⅰ 深圳市丰瑞祥电子商务有限公司怎么样
深圳市丰瑞祥电子商务有限公司是2017-11-01注册成立的有限责任公司(自然人独资),注册地址位于深圳市龙岗区平湖街道任屋村83号1楼101。
深圳市丰瑞祥电子商务有限公司的统一社会信用代码/注册号是91440300MA5ETLC6XJ,企业法人秦卓斌,目前企业处于开业状态。
深圳市丰瑞祥电子商务有限公司的经营范围是:经营电子商务;日用百货、电子产品、数码产品、电脑及配件、玩具、家用电器、服装、服饰、鞋、帽、箱包、化妆品的批发销售;国内贸易;货物及技术进出口。^。
通过爱企查查看深圳市丰瑞祥电子商务有限公司更多信息和资讯。
Ⅱ 本人想通过电子商务做外贸业务,阿里巴巴的外贸平台效果怎么样回报率如何
你是什么行业呢?某些行业是有细分化的外贸b2b平台的。
我看有人在推荐敦煌网,这个也是需要看你的产品,敦煌更多的是做wholesale,也就是小额批发,它更多的是B2C。
像阿里巴巴,慧聪网、环球资源这样的大型平台,往往会聚集很多竞争对手,但很多老外也是非常喜欢在上面集体询盘,抓住机会的话,也能创造不少的订单。
现在国内很多企业都开始自己推广,更多利用搜索引擎,SNS社交平台。这些你也可以考虑一下。
Ⅲ 电商平台如何更好地构建用户标签体系
构建用户标签体系主要根据用户在历史时间内的网购行为记录,从网购时间点、内容深度剖析,针对用户的基础属性、社交行为、互动行为、消费行为、偏好习惯、财富属性、信用属性和地理属性等八大维度构建用户标签体系,以期综合描绘平台消费者的行为特征。
这其中,除了业务的输入以及数据的支撑外,要想快速建立一套科学的标签体系,还需要丰富的技术经验以及智能的工具或平台来提供助力,如阿里云或袋鼠云的数据中台。
Ⅳ 你所了解的大数据,是真正的大数据吗
什么是大数据
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据时代存储所面对的问题
随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,就这个例子来说,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。
从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。在这里,我们会讨论哪些与大数据存储基础设施相关的属性,看看它们如何迎接大数据的挑战。
容量问题
这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。基于这样的需求,客户现在越来越青睐Scale-out架构的存储。Scale-out集群结构的特点是每个节点除了具有一定的存储容量之外,内部还具备数据处理能力以及互联设备,与传统存储系统的烟囱式架构完全不同,Scale-out架构可以实现无缝平滑的扩展,避免存储孤岛。
“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。
延迟问题
“大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。举个例子来说,网络成衣销售行业的在线广告推广服务需要实时的对客户的浏览记录进行分析,并准确的进行广告投放。这就要求存储系统在必须能够支持上述特性同时保持较高的响应速度,因为响应延迟的结果是系统会推送“过期”的广告内容给客户。这种场景下,Scale-out架构的存储系统就可以发挥出优势,因为它的每一个节点都具有处理和互联组件,在增加容量的同时处理能力也可以同步增长。而基于对象的存储系统则能够支持并发的数据流,从而进一步提高数据吞吐量。
有很多“大数据”应用环境需要较高的IOPS性能(IOPS (Input/Output Operations Per Second),即每秒进行读写(I/O)操作的次数,多用于数据库等场合,衡量随机访问的性能),比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。
并发访问一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。
安全问题
某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。
成本问题
“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,都能够获得明显的投资回报。此外,自动精简配置、快照和克隆技术的使用也可以提升存储的效率。
很多大数据存储系统都包括归档组件,尤其对那些需要分析历史数据或需要长期保存数据的机构来说,归档设备必不可少。从单位容量存储成本的角度看,磁带仍然是最经济的存储介质,事实上,在许多企业中,使用支持TB级大容量磁带的归档系统仍然是事实上的标准和惯例。
对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。
数据的积累
许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。
灵活性
大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。
应用感知
最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。
小用户怎么办?
依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。
Ⅳ 商务智能在电子商务中有哪些应用
商务智能在电子商务中应用的重要意义,并对国内外商务智能的研究现状进行了分析,构建了商务智能在电子商务中应用的I2EC阶段模型。在分析中国文化对商务智能应用影响的基础上,提出了中国文化视角下商务智能在电子商务中应用的研究模型。
一、中国文化视角下商务智能(BI)
在电子商务中应用研究的意义在信息时代,如何把电子商务企业(包括实施电子商务的传统企业)利用信息技术和实施电子商务所积累的大量的数据金矿、转化为对企业管理有用的信息、进一步提炼成对企业决策经营至关重要的知识进而全面提升电子商务企业的竞争力,而商务智能(Business Intelligence,简称BI)恰是担此重任的理想选择。
据《信息周刊》对2006商业科技100强的调查, 对大多数企业来说,信息仍然是一笔未被充分挖掘的资产,但BI的实施成功率可能不到50%”。Gartner研究公司的副总裁和著名的分析师Betsy Burton认为:商务智能(没有成功)的核心问题不是技术问题,问题恰恰是商务领导人方面的失败,他们没有能够确保企业得到他们所需要的信息,并且没有把信息按照对企业目标有意义的方式进行调整,归根到底是文化的问题。
二、商务智能(BI)国内外研究现状及分析
(一) 商务智能(BI)国外研究现状及分析
商务智能的概念由Gartner Group的Howard Dresner在1989年首次提出。Microsoft的创始人Bill Gates在1999年出版的Business @ the speed of thought using a digital nervous system一书中提到:首席执行官在提高一家公司的智商方面的作用,就是要营造一种气氛,它促进信息共享与合作,给那些信息共享在其中有价值的领域以优先地位,提供使信息共享成为可能的数字工具,以及奖励对充分的信息流作贡献的人。可以说,Bill Gates的这本书蕴含了丰富的商务智能(BI)的思想。通过文献查阅,笔者把国外与商务智能(BI)相关的研究分为三类:
1、对商务智能理论、技术方法和构架等方面的研究
Datamonitor,Stephan,Robert等学者对商务智能(BI)的理论、数据挖掘、神经网络与智能计算等商务智能技术、商务智能系统和商务智能的应用进行了研究。Neal等学者提出了在分布式异构环境中基于Agent的商务智能系统构架。
2、商务智能(BI)在电子商务企业的应用研究
Smith,Reddy等学者进行了商务智能(BI)在供应链管理(SCM)中的应用研究。Wells,Rick等进行了商务智能(BI)在客户关系管理(CRM)中的应用研究。Rao等对商务智能(BI)与物流管理的关系进行了研究。Ruddock等对商务智能(BI)应用于企业的绩效管理进行了研究。
3、商务智能(BI)在行业和政府等的应用研究
Ruddock等从企业绩效管理的视角研究了商务智能(BI)在金融行业的应用,Skriletz等学者对商务智能(BI)在金融服务业中的应用进行了研究。Ric等对商务智能(BI)在零售业中的应用进行了研究。Business Objects White Paper论述了在通信行业如何成功实施商务智能(BI)。Kuma等对商务智能(BI)在保险业的应用进行了研究,其他的一些学者还对商务智能(BI)在制药业、制造业和证券业等行业的应用进行了研究。
(二)商务智能(BI)国内研究现状及分析
我国近年来也开始有一些学者在商务智能方面开展研究工作,有学者进行了商务智能理论和应用方面的综述研究;有学者进行了商务智能在我国的发展现状、问题及其对策的研究;有学者进行了商务智能在现代企业中的应用研究;有学者对商务智能(BI)的设计、部署与实现进行了研究;有学者对事件驱动式商务智能进行了研究;有学者从商务智能(BI)的管理、技术与应用方面进行了研究;有学者进行了ERP、CRM、SCM和商务智能(BI)协同商务建设的研究;有学者从文化的视角对IT采纳和电子政务进行了实证研究。
三、商务智能(BI)在电子商务中应用的I2EC阶段模型
电子商务企业在电子交易活动及相关活动(如:ERP、CRM、SCM、以及对合作伙伴、竞争对手、企业外部环境交互活动等)中积累了大量关于商流、物流、资金流、工作流和人的数据,这些数据量大,类型结构较为复杂,但是企业经营管理的基础,对企业非常重要,有人把它比喻为数据金矿。商务智能(BI)通过 ETL、数据仓库技术、数据挖掘技术和数据分析等技术把电子企业的数据金矿转化为对企业经营决策有用的信息和知识,从而给企业带来竞争优势、商业机会和实实在在的利润:也就是说给企业及管理者插上智慧的翅膀。
信息(Information)阶段
处于该阶段的企业IT战略目标是使企业自身从数据金矿的负债阶段转变到企业的信息阶段。企业为了实施信息化,购买大量的IT设备,购买或研发了软件,聘用了工资不扉的IT人才,在IT基础设施上进行了大量的投资,同时信息化为企业带来了大量的数据金矿,这就形成了企业数据资产的负债阶段,此阶段企业致力于如何把数据转化为对企业有用的信息。
跨部门的信息共享及智能(Intelligence)感知阶段
电子商务企业利用数据仓库(DW)等技术对企业中各部门异构数据源进行提取、净化、装载及集成(ETL),以实现企业的信息流通和共享,对企业内、外部的变化及时感知并积极响应,从而实现电子商务企业的职能感知阶段。
1、商务智能的延伸(Extension)阶段
在该阶段企业利用数据挖掘(DM)、知识发现(KDD)和决策支持系统(DSS)等技术,通过BI在企业客户关系管理(CRM)、电子商务交易系统(E- Commerce)、企业资源管理系统(ERP)、供应链管理系统(SCM)和营销系统等的成功应用,形成企业的增值信息和知识,并通过增值信息和知识在价值链内的利益相关者中的共享,给企业带来更多的附加价值,从而实现电子商务企业的职能延伸阶段。
2、通过智能外网实现企业信息日用品化(Commoditization)的增值阶段。
企业通过智能外网把企业商务智能所形成的数据、增值信息和知识像日用品(Commoditization)一样地销售给新类型的客户,实现数据的市场化,以把企业的数据金矿变成企业新的利润增长点,发现新的市场机会和新的商务模式,增强企业的核心业务,为企业提供了持续的核心竞争力。
四、中国文化视角下商务智能(BI)在电子商务中应用的研究模型
企业本质上是一个动态的、不断更新的一集共享的知识系统,具有学习和知识与创新知识的内在属性,而管理者的任务就是管理和促进企业知识的共享、运用与创新。
中国文化视角下商务智能(BI)在电子商务中应用的研究模型如图1所示。该研究模型采用Hofstede文化价值理论,在借鉴欧美西方发达国家的商务智能(BI)应用成功经验基础上,结合我国电子商务的特点,研究基于我国特有文化的商务智能(BI)的应用方法。该研究模型沿“理论基础融合→理论推演/建模 →实证分析研究→得出结论(实施方案/指导原则)”的总体思路展开。
Ⅵ 中兴极客电子商务股份公司怎么样
简介:中兴极客电子商务股份公司隶属兴中集团,是一家专业从事智能传感设备,集研发、设计、软件开发及场景营销解决方案为一体的创新型高科技企业,低成本打造新零售智慧化店铺。其自主开发的“极客智慧门店系统”及自主研发生产的“极客三宝”智能产品,布署线上线下场景。以搭载公司开发的O2M近场营销物联网系统和云计算、大数据为用户提供近场感知、近场营销、近场支付、BI数据分析等一站式SaaS系统。
法定代表人:姜思宇
成立时间:2017-11-01
注册资本:10000万人民币
工商注册号:440300202791044
企业类型:其他股份有限公司(非上市)
公司地址:深圳市龙华区大浪街道新石社区浪峰路7号1栋11层1109室
Ⅶ 云智造电子商务(北京)有限公司这个公司具体做什么的
1经营内容编辑
云智造是专注于模具产业链在线交易的重度垂直B2B电子商务平台,致力于为模具产业链上的企业提供全面、精准、高效、安全的互联网线上采购与供应服务。立志打造中国最大的模具产业链交易平台,建立"全面、精准、高效、安全"的优良互联网商业环境。
2产品品牌编辑
云智造核心团队由深耕模具行业20余年的业内资深人士及互联网领域从业十余年的专业技术团队组成,平台功能完全符合制造业企业采销流程,是最"接地气"的模具产业链交易平台。
云智造平台包含供应链管理中心、采购商会员中心及供应商会员中心三大模块,用户分别通过采购商会员中心和供应商会员中心实时进行采购执行和产品发布,云智造超级供应链管理中心同时快速为采购双方提供全面、精准、高效、安全的采购服务,并由云智造专业服务团队实时跟进每笔订单状态,为每笔交易的顺利进行提供监督保障,帮助采购双方企业建立良好的信用体系。
3公司架构编辑
云智造平台所有上线的供应商全部是经过云智造专业供应链团队精心的选择和评估的,每一家上线供应商都能够保证产品真品正品,技术专业规范,服务贴心到位。由于云智造集合了众多的采购商的需求,形成了无比强大的议价能力,保证了所有上线的产品质优价廉。
4发展历史编辑
云智造平台规范的买卖流程帮助买卖双方快速解决交易过程中常见的问题,为供求双方建立无障碍的通道,解决了企业传统渠道拓展市场的低效能高投入难题,不仅能为企业 "开源节流",还能帮助中小型企业储备丰富的供应资源,开拓更广阔的市场!
参考网络:http://ke..com/link?url=pJtpTZXAHrJBPaNMJhdM3_-_4vXUbH